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This note considers variable selection in the robust linear model via R-estimates. The proposed rank-based approach is a generalization
of the penalized least squares estimators where we replace the least squares loss function with Jaeckel’s (1972) dispersion function.
Our rank-based method is robust to outliers in the errors and has roots in traditional nonparametric statistics for simple location-shift
problems. We establish the theoretical properties of our estimators which ensure desirable asymptotic behaviour of setting coefficient
estimates to zero for unimportant variables and consistently estimating coefficients for important variables. Numerical studies indicate
that the rank-based methods perform well for both light- and heavy-tailed error distributions.
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1 Introduction

Recently, a substantial amount of attention has been paid to variable selection in the linear model through
so-called penalized least squares (PLS) estimators [1–4]. Consider the linear regression model

yi = β′xi + εi, (i = 1, . . . , n), (1)

where yi is the response variable and xi is a d-vector of fixed predictors for the ith subject, β = (β1, . . . , βd)
′

is a d-vector of regression coefficients, and (ε1, . . . , εn) are independent and identically distributed errors
with absolutely continuous density f . Here, we assume that the predictors have been standardized to have
mean zero and unit variance. A PLS estimator is defined as the minimizer of

RSS + n

d∑

j=1

pλ,j(|βj |), (2)

where RSS = ‖y − Xβ‖2, y = (y1, . . . , yn)′, X = (x1, . . . ,xn)′, pλ,j is a penalty function on the j-th
coefficient and λ is a regularization parameter. Penalty functions pλ,j that shrink some coefficient estimates
to zero are also considered variable selection procedures and we only discuss those penalty functions in
the sequel. In the presence of outliers, it is desirable to replace the residual sum of squares (RSS) in (2)
with a robust statistic. Naturally, one could replace RSS with a statistic based on robust M -estimators [5].
Alternatively, one could replace RSS with a rank-based statistic. The latter rank-based method has not
been described in the literature and is the focus of this paper. Two interesting extensions of the methods
discussed here are high-breakdown and censored outcome variable selection through the high-breakdown
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rank regression estimator [6] and the rank-based accelerated failure time model [7–9], respectively. Hence,
we believe the methods described in the sequel may be of general interest and utility.

In this note, we suggest a robust variable selection approach by replacing the RSS in (2) with Jaeckel’s [10]
dispersion function. Hence, our rank-based objective function is defined as

Qn(β) = Dn(β) + n

d∑

j=1

pλ,j(|βj |), (3)

where Dn(β) =
∑n

i=1 φ[R{ei(β)}/(n+1)−(1/2)]ei(β), ei(β) = yi−β′xi, φ(·) is a weight function assumed
to be non-decreasing, and R{ei(β)} is the rank of ei(β) among {e1(β), . . . , en(β)}. It is well-known that
when the weight function is the identity function, Dn(β) is equivalent to the usual Wilcoxon statistic. The

proposed estimator for β is defined as β̂n(λ) = arg min Qn(β).
In this paper, we consider several penalty functions pλ,j of recent interest. The hard and soft thresholding

rules from wavelet thresholding [18] lead to the hard penalty function, pλ,j(|β|) = λ2 − (|β|−λ)2I(|β| < λ)
(for all j), and the lasso [1] penalty function pλ,j(|βj |) = λ|β| (for all j), respectively. The scad penalty [2]
was presented as a compromise between the hard and soft penalty and is defined

pλ,j(|β|) = λ|β|
{

I(|β| ≤ λ) +
(a − |β|/2λ)

(a − 1)
I(λ < |β| ≤ aλ) +

a2λ

(a − 1)2|β|I(|β| > aλ)

}
, j = 1, . . . , d,

where a > 2. Elastic net (en) penalty, pλ,j(|β|) = λ1|β| + λ2β
2 (for all j), was introduced by Zou and

Hastie [3], and like the scad penalty, is a mixing of two penalties: the ℓ1 and ridge penalty [11]. Adaptive
lasso (alasso) is a consistent version of the ℓ1 penalty [4] and is defined pλ,j(|β|) = λ|β|wj , for a data-

dependent weight wj on the j-th coefficient. In our analyses, we use the weight wj = 1/|β̃j |, where

β̃n = (β̃1, . . . , β̃d)
′ is the d-vector of usual rank coefficient estimates [12,13] defined as the minimizer of the

unpenalized dispersion function Dn(β). Note that some penalty functions are defined in terms of more than
one regularization parameter (e.g. (a, λ) for scad and (λ1, λ2) for elastic net). Without loss of generality,
we use λ to refer to regularization parameters, regardless of their dimension.

The remainder of our article is organized as follows. The main results are described in Section 2 and an
efficient algorithm for calculating the penalized rank statistics in Section 3. We illustrate the utility of our
method through simulation studies in Section 4 and one real data set in Section 5.

2 Main results

In this section, we study the large sample properties of the proposed rank estimators. We show that the
scad, hard, and adaptive lasso rank-based estimators have the the so-called oracle property [18], that is,
under appropriate regularity conditions, the minimizer of Qn(β) behaves asymptotically as if the true

model were known a priori. To describe the large sample properties, we use the short-hand β̂n = β̂n(λ)
and introduce the following new notation.

Without loss of generality, suppose that β0j 6= 0 for j ≤ s and β0j = 0 for j > s. Then, a definition for the
partitioned vector of true regression parameters follows naturally, i.e. β0 = (β′

01,β
′
02)

′ where β02 = 0. The

estimator is similarly partitioned as β̂n = (β̂
′

1, β̂
′

2)
′ where β̂1 = (β̂1, . . . , β̂s)

′ and β̂2 = (β̂s+1, . . . , β̂d)
′. The

derivatives of the penalty functions play important roles in the operating characteristics of the penalized
estimators. We use the dummy argument θ for one of βj , j = 1, . . . , d, and adopt the following notation
(d/dθ)pλn,j(|θ|) = qλn,j(|θ|)sgn(θ), and (d/dθ)qλn,j(|θ|) = q̇λn,j(|θ|)sgn(θ). For simplicity in exposition, we
drop the subscript j when the penalty function does not depend on j.

We begin with some preliminary results on rank statistics adopted in this paper [10,14,15]. Throughout
the paper we assume that the regularity conditions in Jurec̆ková [15] hold (See also, Heiler and Willers [16]).
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Define the d-dimensional score function ∇Dn(β) = (−1)Un(β) where

Un(β) =

n∑

i=1

(xi − x̄)φ

[
R{ei(β)}

n + 1
− 1

2

]
,

where x̄ = n−1
∑n

i=1 xi and is exactly zero when the predictors are standardized. Define the matrix
A = limn τ−1(X′X)/n where

τ−1 =

∫ ∞

−∞
φ{F (u)}

{
d

du
f(u)

}
du.

First, we have the usual asymptotic linearity for rank statistics [14,15,20]; that is, for any M > 0,

sup
‖β−β

0
‖≤M ·n−1/2

‖n−1/2Un(β) − n−1/2Un(β0) + A{n1/2(β − β0)}‖ →P 0.

Second, Dn(β) has a quadratic approximation in any root-n neighborhood of β0 [10]. Specifically, for any
M > 0,

sup
‖β−β

0
‖≤M ·n−1/2

|Dn(β) − Dn(β0) + n−1/2Un(β0)
′{n1/2(β − β0)}

−1

2
{n1/2(β − β0)}′A{n1/2(β − β0)}| →p 0.

In addition, n−1/2Un(β0) →d N(0,V) with V = κ2τA, where κ =
[∫ 1

0 {φ(u) −
∫ 1
0 φ(v)dv}2du

]1/2
. It

follows easily that n1/2(β̃n − β0) →d N(0, κ2τA−1). In the special case of Wilcoxon score (i.e. φ(u) =

u − 1/2), it is easy to check that κ = 12−1/2, τ =
[∫∞

−∞{f(u)}2du
]−1

, and V = (12)−1 limn(X′X)/n.

The following theorem states the main theoretical result regarding the scad and hard penalized rank
estimators — including the existence of an n1/2-consistent estimator, the sparsity of the estimator (that
is, shrinking some coefficient estimates exactly to zero) and the asymptotic normality of the estimator.

Theorem 2.1 Let (y1,x1), . . . , (yn,xn) be independent and identically distributed. Assume that qλn,j =
qλn

, j = 1, . . . , d, and
(i) for non-zero fixed θ, lim n1/2qλn

(|θ|) = 0 and lim q̇λn
(|θ|) = 0;

(ii) for any M > 0, lim λ−1
n inf |θ|≤Mn−1/2 qλn

(|θ|) > 0;

(iii) λn → 0 and n1/2λn → ∞.
Then the following conclusions hold:

(a) there exists a local minimizer β̂n of Qn(β) such that ‖β̂n − β0‖ = Op(n
−1/2).

(b) limn→∞ Pr(β̂2 = 0) = 1 and

n1/2(A11 + Σ11)
{

β̂1 − β01 + (A11 + Σ11)
−1bn

}
→d N(0,V11),

where A11,Σ11 and V11 are the first s × s sub-matrices of A,Σ = diag {q̇λn
(|β0|)sgn(β0)} and V,

respectively, and bn = (qλn
(|β01|)sgn(β01), . . . , qλn

(|β0s|)sgn(β0s))
T .

Remark 1. In Theorem 2.1, we impose assumptions on the penalty function and the regularization param-
eter in order to simultaneously achieve the root-n consistency of the regularized rank estimation and the
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consistency of variable selection. To see that see that scad penalty satisfies conditions (i)-(ii), note that

qλn
(|θ|) = λn

{
I(|θ| ≤ λn) +

(aλn − |θ|)+
(a − 1)λn

I(|θ| > λn)

}
,

where c+ = cI(c ≥ 0). If we let λn → 0 and
√

nλn → ∞, then limn
√

nqλn
(|θ|) = limn q̇λn

(|θ|) = 0 for
θ 6= 0 and

√
n inf |θ|≤Mn−1/2 qλn

(|θ|) =
√

nλn. For the hard penalty, we have qλn
(|θ|) = 2(λn−|θ|)I(|θ| < λn)

which again satisfies conditions (i)-(ii) if λn → 0 and
√

nλn → ∞.

In Theorem 2.2, we show that the oracle property of the rank-based variable selection approach persists
with the adaptive lasso penalty, albeit under slightly different conditions.

Theorem 2.2 Let (y1,x1), . . . , (yn,xn) be independent and identically distributed and consider adaptive
lasso penalty, i.e. pλ,j(|βj |) = λ|βj |/|β̃j |.
(a) If

√
nλn = Op(1), then ‖β̂n − β0‖ = Op(n

−1/2).

(b) If
√

nλn → λ0 with 0 ≤ λ0 < ∞ and nλn → ∞, then the adaptive alasso estimator satisfies limn P (β̂2 =
0) = 1 and

n1/2A11

{
β̂1 − β01 + n−1/2A−1

11 λ0b1

}
→d N(0,V11),

where A11 and V11 are the first s × s sub-matrices of A and V, respectively, and b1 =
(sgn(β01)/|β01|, . . . , sgn(β0s)/|β0s|)′.

The proofs for Theorems 2.1-2.2 are given in the Appendix. Finally, a consistent estimator for the
asymptotic variance-covariance matrix of β̂1 is given by

n−1(Â11 + nΣ̂11)
−1V̂11(Â11 + nΣ̂11)

−1,

where X1 refers to the first s columns of the design matrix, Â11 = τ̂−1X′
1X1/n, τ̂ a consistent estimate

of τ [17], V̂11 = X′
1X1/n, and Σ̂11 is given below in (5).

3 Implementation

In this paper, we estimate the penalized regression coefficients using a majorize-minorize (MM) algorithm

[22]. If we let β[k] denote the k-th iterate for fixed λ and β[0] = β̃n, then the iterative MM algorithm is
written:

β[k+1] = β[k] − ρk

[
∇2Dn(β[k]) − nΣλ(β[k])

]−1 [
∇Dn(β[k]) − nqλ(β[k])

]
, k > 0, (4)

where ∇Dn(β) and ∇2Dn(β) denote the gradient vector and Hessian matrix, respectively, ρk is some
positive scalar, and

qλ(β) = {qλ,1(|β1|)sgn(β1), . . . , qλ,d(|βd|)sgn(βd)}′,
Σλ(β) = diag {qλ,1(|β1|)/(ǫ + |β1|), . . . , qλ,d(|βd|)/(ǫ + |βd|)} , (5)

with ǫ chosen to be a small number. The matrix ∇2Dn(β) depends on the unknown density f but may
be estimated using existing methods [17]. Our MM algorithm continues until successive iterates are less a

user-defined threshold; in our case, we continue until max1≤j≤d |β[k+1]
j − β

[k]
j | < 10−8. Interested readers

may find exemplary R programs that implement the the above MM algorithm (4) on the first author’s
website: http://userwww.service.emory.edu/~bajohn3.
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We tune our estimators by minimizing a generalized cross-validation (GCV) statistic. In the penalized
least squares setup, the GCV statistic is given by:

GCVLS(λ) =
RSS(λ)/n

{1 − e(λ)/n}2
, (6)

where RSS(λ) = ‖y− ŷ(λ)‖2, ŷ(λ) = α̂ + Xβ̂n(λ), α̂ = ȳ [an estimate of the intercept α = E(ε1)], e(λ) is

the effective number of parameters, i.e., e(λ) = tr[X{X′X + Σλ(β̂n(λ))}−1X′]. Naturally, one can extend
(6) by replacing RSS(λ) with the sum of absolute deviations, ‖y − ŷ(λ)‖1 and using a robust estimator
for α. To avoid estimating α, we propose a different cross-validation statistic. In the rank-regression
framework, we optimize the convex dispersion function, Dn(β). Because Dn(β) is itself a norm, it has a
similar geometric interpretation to the residual sum of squares. Thus, we define our new criterion

GCV(λ) =
Dn[β̂n(λ)]/n

{1 − e(λ)/n}2
.

The final regularization parameter is chosen to minimize GCV(λ). Our experience suggests the proposed
cross-validation statistic and one based on absolute deviations perform equally well for symmetric error
distributions. We conjecture that GCV(λ) may offer some advantages for asymmetric error distributions
although we have not fully investigated this claim.

4 Simulation Studies

We simulated 100 datasets of size n from the model

yi = β′xi + σεi, i = 1, . . . , n, (7)

where β = (3, 1.5, 0, 0, 2, 0, 0, 0)′ , xi are standard normal with the correlation between the jth and kth
components of x equal to 0.5|j−k|. The errors εi are iid following one of standard normal, Laplace, Cauchy,
or t5 distribution. This model has been used elsewhere in the variable selection literature when considered
with normal errors εi [1, 2]. In our simulation studies, we only consider the Wilcoxon weight function.

Define the prediction ŷ(λ) = Xβ̂n(λ) in the linear model (7). It is easy to see that the prediction error

PE = ‖y − ŷ(λ)‖2 can be decomposed: PE = ME + nσ2, where the model error is ME ≡ (β̂n(λ̂) −
β)′E(xx′)(β̂n(λ̂)−β). Hence, the statistic ME is a summary measure of the variable selection procedure.
As in Fan and Li [2], we compare the proposed rank-based variable selection procedures using the median
of relative model error (MRME), where the ratio of model error (RME) is defined as the model error of the
rank-based penalized estimators over the model error of the full-model rank regression estimator for each
Monte Carlo data set. We also compared the average numbers of regression coefficients that are correctly
(C) or incorrectly (I) shrunk to 0. The results for normal errors are presented in Table 1, where oracle
pertains to the situation in which we know a priori which coefficients are non-zero.

The performance of the rank-based estimators with the scad and alasso penalty approach that of the
oracle estimator as n increases. When the signal-to-noise ratio (e.g. σ/n in our example) is small, scad and
alasso methods perform better than lasso in terms of model error and model complexity. However, lasso
and elastic net estimators perform better than oracle methods as σ/n increases.

Table 2 reports the results on the accuracy of the proposed sandwich formulae in estimating the variances
of the non-zero estimated regression coefficients: here, we only summarize standard errors estimates for
β̂1(λ̂). The standard deviation (SD) pertains to the median absolute deviation of the estimated regression
coefficients divided by 0.6745. The median of the standard error estimates (SEE) gauges the performance
of the sandwich estimator. The median of the absolute deviation of the standard error estimates divided
by 0.6745 is reported in parentheses. At n = 75, the standard error estimates already match reasonably
well the true standard errors of the regression coefficient estimates. When the sample size is increased to
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Table 1. Simulation results on model selection with nor-

mal errors.

Avg. No. of 0 coefficients
Method MRME (%) C I
n = 50, σ = 3
scad 63.60 4.65 0.29
hard 78.63 4.76 0.47
lasso 60.62 3.54 0.04
alasso 63.49 4.50 0.13
en 61.90 3.46 0.03
oracle 27.37 5 0

n = 50, σ = 1
scad 35.88 4.05 0
hard 42.72 4.70 0
lasso 56.12 3.05 0
alasso 35.70 4.90 0
en 67.08 2.86 0
oracle 27.54 5 0

n = 65, σ = 1
scad 40.09 4.11 0
hard 44.27 4.67 0
lasso 64.95 3.03 0
alasso 38.39 4.88 0
en 74.73 2.88 0
oracle 30.53 5 0

Table 2. Simulation results on standard error estimation with normal errors.

normal t5 Laplace Cauchy

SD SEE(SD) SD SEE(SD) SD SEE(SD) SD SEE(SD)
n = 75, σ = 1
scad 0.144 0.127 (0.022) 0.160 0.141 (0.021) 0.134 0.157 (0.032) 0.258 0.268 (0.060)
hard 0.146 0.127 (0.024) 0.158 0.141 (0.023) 0.132 0.156 (0.031) 0.238 0.268 (0.060)
lasso 0.158 0.120 (0.022) 0.153 0.132 (0.020) 0.137 0.145 (0.026) 0.272 0.259 (0.067)
alasso 0.149 0.123 (0.021) 0.157 0.136 (0.021) 0.152 0.150 (0.029) 0.258 0.262 (0.062)
en 0.158 0.119 (0.022) 0.164 0.130 (0.019) 0.130 0.143 (0.027) 0.294 0.258 (0.066)
oracle 0.146 0.138 (0.019) 0.151 0.152 (0.025) 0.137 0.165 (0.023) 0.231 0.268 (0.056)

n = 100 and error distribution normal, the difference (SD − SEE) is -0.009, -0.005, 0.007, -0.005, 0.003,
and 0.010 for the scad, hard, lasso, alasso, elastic net (en) and oracle estimates, respectively. Results for
other error distributions improve similarly.

To illustrate the effects of long-tailed error distributions, we give the median relative model errors
comparing least squares to rank estimators for each of five penalty functions in Table 3. Table entries are
summarized for σ = 1 over 100 Monte Carlo data sets. We find that penalized least squares estimators
have smaller model error than penalized rank estimators when the true error distribution is normal but
the opposite is true for error distributions with heavy tails. Moreover, the relative difference between
penalized least squares and rank estimators grows with sample size — for example, 32.2% increase for
the scad penalty when the sample size is doubled from n = 50 to n = 100; the analogous increase for
en penalty is 118.1%. This result confirms our intuition that least squares estimators are inferior to rank
estimators for heavy-tailed error distributions.

Next, we compare Fan and Li’s [2] robust M -estimator to our proposed rank-based estimator. To compare
robust variable selection methods, we used the linear model in (7) with n = 60 and a variation on Fan
and Li’s simulation exercise in their Example 4 [2]. Now, assume the errors εi are iid from the bivariate
mixture distribution:

Fε(t) = pΦ(t) + (1 − p)

[
1

π
arctan(t) +

1

2

]
,

where Φ(t) denotes the standard normal distribution and the expression in square brackets is the standard
Cauchy distribution. Small values of the proportion p lead to a contaminated normal distribution and is
often useful for studying the effect of outliers. Fan and Li studied the case of 10% outliers, i.e. p = 0.10,
whereas our simulation exercise lets the mixing proportion p vary from 0 − 0.60. The statistic of interest
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Table 3. Median relative model errors: penalized least

squares versus penalized rank regression.

scad hard lasso alasso en

n=50
normal 0.96 0.96 1.02 1.05 0.98
t5 1.22 1.19 1.14 1.30 1.13
Laplace 1.33 1.19 1.29 1.41 1.22
Cauchy 16.14 17.48 9.99 15.88 7.23

n=75
normal 0.95 1.03 0.93 1.04 0.96
t5 1.38 1.37 1.28 1.34 1.27
Laplace 1.29 1.26 1.38 1.47 1.34
Cauchy 19.77 23.76 9.85 14.81 9.62

n=100
normal 0.90 0.91 0.91 0.97 0.95
t5 1.20 1.22 1.17 1.22 1.18
Laplace 1.38 1.49 1.24 1.45 1.31
Cauchy 21.34 26.20 15.33 18.51 15.77

Figure 1. Penalized R-estimates versus M-estimates. Median relative model errors (MRME) are displayed as a function of p, where p is
the proportion of errors from a standard normal distribution in a bivariate mixture error distribution Fε. The remaining n × (1 − p)
errors follow a standard Cauchy distribution. MRME is displayed for each of lasso (L), adaptive lasso (A), hard (H), and scad (S)

penalty and values close to one suggest the rank-based estimator is better.
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in our simulation study is again the median relative model error, defined as the median of the ratios
ME{β̂(M-estimator)}/ME{β̂(R-estimator)}.

Figure 1 displays our simulation results. We display the simulation summary statistic MRME for each
of scad (S), hard thresholding (H), lasso (L), and adaptive lasso (A) penalties and across increasing
error variance. When the percentage of outlying observations is small, we find that the penalized R- and
M-estimates perform similarly, on average. However, when the proportion of outlying observations gets
larger, the proposed rank-based variable selection methods tend to yield a model with smaller model error.
Moreover, this result seems to hold across penalties with the ℓ1 and scad penalties yielding the smallest
and largest change, respectively. Interestingly, we found that as the error variance decreased, the relative
gain of penalized R-estimators over Fan and Li’s penalized, robust M -estimator increased.
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Table 4. Full model comparisons in the diabetes data: ordinary least squares

(OLS), median and rank regression.

OLS Median Rank

1. Age -0.48 (2.84) 0.46 (3.54) -0.88 (2.94)
2. Sex -11.41 (2.91) -15.60 (3.77) -12.77 (3.02)
3. BMI 24.73 (3.16) 22.00 (4.37) 25.07 (3.28)
4. BP 15.43 (3.11) 19.49 (4.18) 15.99 (3.22)
5. S1 -37.68 (19.80) -40.90 (29.19) -37.96 (20.53)
6. S2 22.68 (16.11) 20.24 (23.16) 21.88 (16.71)
7. S3 -4.81 (10.10) -6.79 (14.40) -4.51 (10.47)
8. S4 8.42 (7.67) 12.26 (12.50) 8.52 (7.96)
9. S5 35.73 (8.17) 36.23 (10.45) 36.91 (8.47)
10. S6 3.22 (3.13) 2.41 (4.37) 2.40 (3.25)

Table 5. Penalized rank estimates for diabetes data.

scad hard lasso alasso en

Age 0 (-) 0 (-) 0 (-) 0 (-) 0 (-)
Sex -12.77 (2.95) -12.77 (2.95) -10.29 (2.50) -11.87 (2.80) -10.45 (2.49)
BMI 25.05 (3.32) 25.05 (3.29) 25.11 (3.04) 25.67 (3.26) 26.24 (3.10)
BP 15.99 (3.14) 15.99 (3.15) 14.24 (2.76) 15.69 (3.05) 14.85 (2.78)
S1 -37.81 (20.06) -37.81 (9.14) -5.66 (2.45) -27.04 (6.56) -5.36 (2.28)
S2 21.78 (15.97) 21.78 (10.02) 0 (-) 13.74 (6.60) 0 (-)
S3 -4.42 (10.05) 0 (-) 10.10 (2.52) 0 (-) 10.60 (2.48)
S4 8.48 (8.02) 8.48 (5.98) 0 (-) 6.08 (3.88) 0 (-)
S5 36.86 (7.97) 36.86 (5.55) 25.92 (3.27) 34.01 (4.20) 26.91 (3.25)
S6 0 (-) 0 (-) 1.25 (1.30) 0 (-) 1.09 (1.01)

5 Analysis of Diabetes Data

Here, we apply our methods to the diabetes data used in Efron et al. [23]. The data set consists of ten
predictors — age, sex, body mass index (BMI), blood pressure (BP), and six blood serum measurements,
S1-S6 — for each of n = 442 patients. The endpoint of interest is a quantitative measure of disease
progression after one year of follow-up. The statistical goal is to build a model that includes important
prognostic variables of disease progression. In this section, the predictors are scaled to have mean zero and
unit variance. Our scale differs from that of Efron et al. [23] in that they scale the predictors to have unit
ℓ2-norm.

We use the Wilcoxon weight function in our analysis of the diabetes data. The estimated coefficients
in the full linear model with ten predictors are summarized in Table 4. We compare the ordinary least
squares fit to the estimated coefficients of median and rank regression. We found the point estimates to
agree, however, the standard error estimates for the estimated rank coefficients were uniformly smaller
than their estimated median coefficient counterparts.

We summarize the estimated regression coefficients using our penalized rank regression estimator in
Table 5. We find that scad and hard thresholding estimators yield very similar models, the only difference
being the variable S3; however, we note the standard error estimates do differ between these two methods.
The adaptive lasso model is similar to the hard thresholding model, although the coefficient estimates
are generally shrunk closer to zero for the adaptive lasso penalty. The models from the so-called oracle
estimators (scad, hard, alasso) may be contrasted with the models resulting from lasso and elastic net
penalties. The models from lasso and elastic net include S3 and S6 and exclude S2 and S4 whereas, in
general, the oracle models switch these pairs of variables.

6 Remarks

We have developed a robust estimator for selecting variables in the linear model. Our estimator extends
the usual rank regression estimator [12,13] by minimizing an objective function defined as the sum of an
appropriate penalty term and the usual dispersion function Dn(β). The resulting penalized rank estimators
simultaneously select variables and estimate their regression coefficients, a feature which allows one to
study the operating characteristics under certain regularity conditions. Like robust M -estimators, our
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penalized rank-based estimator is robust to outliers and heavy-tailed or asymmetric error distributions.
Hence, rank-based variable selection methods proposed here offer investigators another robust method for
variable selection in the linear model and can be implemented using standard software.

Appendix A: Proof of Theorem 2.1

We define the partitioned score vector Un(β) = (Un,1(β)′,Un,2(β)′)′ similar to that of β̂n = (β̂
′

1, β̂
′

2)
′. To

prove part (a), by the continuity of Dn(β), it suffices to show that for any given ǫ > 0, there exists a large
constant M such that

Pr

{
inf

‖u‖=M
Wn(u) > 0

}
≥ 1 − ǫ, (A1)

where Wn(u) = Qn(β0 + n−1/2u)− Qn(β0). This implies the existence of a local minimizer in the M -ball
around β0 and thus completes the proof of part (a).

By condition (i), using the quadratic approximation of Dn(β0 + n−1/2u) and the fact that pλn
(0) = 0

and n−1/2Un(β0) = Op(1), we get

Wn(u) ≈ −{n−1/2Un(β0)}′u +
1

2
(u′Au) + n

d∑

j=1

{pλn
(|βj + n−1/2uj| − pλn

(|βj |)}

≥ −{n−1/2Un(β0)}′u +
1

2
(u′Au) + n

s∑

j=1

{pλn
(|βj + n−1/2uj | − pλn

(|βj |)}

= −{n−1/2Un(β0)}′u +
1

2
(u′Au) + n1/2

s∑

j=1

qλn
(|β0j |)uj +

s∑

j=1

q̇λn
(|β0j |)u2

j{1 + o(1)}

≈ −Op(1)
d∑

j=1

|uj | +
1

2
(u′Au) ≥ −Op(1)

d∑

j=1

|uj | +
1

2
a0‖u‖2

where ≈ represents the asymptotic equivalence uniformly in u ∈ {u : ‖u‖ ≤ M} and a0 is the smallest
eigenvalue of A. Since A is positive definite, a0 > 0. Therefore (A1) holds by choosing a sufficiently large
M .

We now prove part (b). It is sufficient to show that with probability tending to 1, for any M > 0
and for each β∗ satisfying ‖β∗

1 − β01‖ = Op(n
−1/2) and β∗

j ∈ (−Mn−1/2,Mn−1/2) with j = s + 1, . . . , d,
∂Qn(β)/∂βj |β=β∗ and β∗

j have the same sign. By the asymptotic linearity of Un(β), we have

n−1/2 ∂Qn(β)

∂βj
|β=β∗ = −n−1/2Un,j(β0) + A(j){n1/2(β∗ − β0)} + n1/2qλn

(|β∗
j |)sgn(β∗

j ) + o(1)

= Op(1) +
(
n1/2λn

)
· {qλn

(|β∗
j |)sgn(β∗

j )/λn}, j = s + 1, . . . , d,

where A(j) denotes the jth row of A. It follows from conditions (ii) and (iii) that

(
n1/2λn

)
· {qλn

(|β∗
j |)/λn} → ∞.

This then implies that the sign of ∂Qn(β)
∂βj

|β=β∗ is completely determined by that of β∗
j as n is large enough.

By the definition of β̂n, we see from previous arguments that n−1/2 ∂Qn(β)
∂β

1

|
β=(bβ

′

1
,0′)′

= op(1). It follows
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from the asymptotic linearity of Un(β) that

op(1) = n−1/2Un,1(β0) −A11n
1/2(β̂1 − β01) − n1/2qλn

(|β̂1|)sgn(β̂1)

After the Taylor series expansion of the last term, we conclude that

n1/2(A11 + Σ11)
{

β̂1 − β01 + (A11 + Σ11)
−1bn

}
= n−1/2




Un,1(β0)

...
Un,s(β0)



+ op(1) →d N(0,V11).

Appendix B: Proof of Theorem 2.2

The proof of Theorem 2 bears similarity with that of Theorem 1. The major distinctions are the use of
the convexity of Dn(β) and the way of controlling the asymptotic order of the adaptive lasso penalty.

To show part (a), we first obtain that (|β̃j |)−1 = (|β0j|)−1 +n−1/2Op(1) because ‖β̃n−β0‖ = Op(n
−1/2).

Because n1/2λn = Op(1), straightforward manipulations similar to that in the proof of Theorem 1 give

Wn(u) ≈ −{n−1/2Un(β0)}′u +
1

2
(u′Au) + nλn

d∑

j=1

(
|β0j + n−1/2uj|

|β̃j |
− |β0j |

|β̃j |

)

≥ −Op(1)
d∑

j=1

|uj | +
1

2
(u′Au) − n1/2λn

s∑

j=1

|uj |/|β̃j |

≈ −Op(1)
d∑

j=1

|uj | +
1

2
(u′Au) − Op(1)

s∑

j=1

|uj |/|β0j |

≥ −Op(1)M +
1

2
a0‖u‖2 − Op(1)

s∑

j=1

|uj |/|β0j |.

Adopting the similar arguments for Theorem 1, we have Wn(u) > 0 for all ‖u‖ = M when M is chosen to
be sufficiently large. By the convexity of Dn(β), it follows that Wn(u) > 0 for all ‖u‖ ≥ M . This indicates
that all global minimizers of Qn(β) must lie in the M -ball around β0. Therefore, the adaptive lasso rank

estimator ‖β̂n − β0‖ = Op(n
−1/2).

To show part (b), we note from the asymptotic linearity of Un(β) that

n−1/2 ∂Qn(β)

∂βj
|β=β∗ = −n−1/2Un,j(β0) + A(j){n1/2(β∗ − β0)} + nλn

sgn(β∗
j )

|n1/2β̃j |
+ o(1),

where β∗ is the same as that defined in the proof of Theorem 1. Because n1/2Un(β0) = Op(1) and

n1/2|β̃j | = Op(1) for j = s + 1, . . . , d, we have

n−1/2 ∂Qn(β)

∂βj
|β=β∗ = Op(1) + nλn

sgn(β∗
j )

Op(1)
, j = s + 1, . . . , d.

Because nλn → ∞, the sign of ∂Qn(β)/∂βj |β=β∗ is the same as that of β∗
j (j = s + 1, . . . , d) as n is large
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enough. This implies that Pr(β̂2 = 0) → 1. Coupled with the definition of β̂n, this also implies that

op(1) = n−1/2 ∂Qn(β)

∂β1

|
β=(bβ

′

1
,0′)′

= −n−1/2Un,1(

(
β̂1

0

)
) + n1/2λn

(
sgn(β̂1)

|β̃1|
, . . . ,

sgn(β̂s)

|β̃s|

)′

= −n−1/2Un,1(β0) + A11n
1/2(β̂1 − β01) + n1/2λn

(
sgn(β01)

|β̃o
1 |

, . . . ,
sgn(β0s)

|β̃s|

)′

+ op(1).

Because n1/2λn → λ0 and β̃j →p β0j 6= 0 for j = 1, . . . , s, n1/2A11(β̂1 − β01 + n−1/2A−1
11 λ0b1) =

n−1/2Un,1(β0) + op(1). Given that n−1/2Un,1(β0) →d N(0, V11), applying the Slutsky’s Theorem com-
pletes the proof of part (b).
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