
Printed in Great Britain

Biostatistics (2009), 1, 1, pp. 1–8

Rank-based estimation in the `1-regularized

partly linear model for censored outcomes with

application to integrated analyses of clinical

predictors and gene expression data

By BRENT A. JOHNSON
Department of Biostatistics, Emory University, Atlanta, GA 30322, USA

e-mail: bajohn3@emory.edu

Summary

We consider estimation and variable selection in the partial linear model for censored data. The
partial linear model for censored data is a direct extension of the accelerated failure time model,
the latter of which is a very important alternative model to the proportional hazards model. We
extend rank-based lasso-type estimators to a model which may contain nonlinear effects. Variable
selection in such partial linear model has direct application to high-dimensional survival analyses
which attempt to adjust for clinical predictors. In the microarray setting, previous methods
can adjust for other clinical predictors by assuming that clinical and gene expression data enter
the model linearly in the same fashion. Here, we select important variables after adjusting for
prognostic clinical variables but the clinical effects are assumed nonlinear. Our estimator is based
on stratification and can be extended naturally to account for multiple nonlinear effects. We
illustrate the utility of our method through simulation studies and application to the Wisconsin
prognostic breast cancer data set.
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1. Introduction

This note is concerned with estimation and computation in the `1-regularized partial linear
model for censored data. To fix ideas, we write the statistical model

log Ti = φ(Zi) + X′iβ + εi, (i = 1, . . . , n), (1)

where Ti is a failure time variable, φ(Zi) is a unknown function of predictors Zi = (Zi1, . . . , Zip)′,
Xi is a d-vector of fixed predictors, β = (β1, . . . , βd)′ is a d-vector of regression coefficients, and
(ε1, . . . , εn) are independent and identically distributed errors with distribution function F . The
goal is to estimate the regression coefficients β while setting some estimates equal to zero using
the observed data {(Yi, δi,Xi,Zi), i = 1, . . . , n}, where Yi = min(Ti, Ci), δi = I(Ti ≤ Ci), Ci is a
random censoring variable and I(·) denotes the indicator function. The assumptions one adopts
can make this estimation problem challenging theoretically and numerically.



2 B. A. Johnson

In survival analysis, the statistical model (1) without the nonlinear term φ(·) is called the
semiparametric accelerated failure time (AFT) model (cf. Kalbfleisch and Prentice, 2002). One
family of estimators for regression coefficients β in the AFT model are called the weighted logrank
estimators (See Section 2) and derived through inverting linear rank tests (Prentice, 1978; Tsiatis,
1990). Our methods extend the class of weighted logrank estimators and, in the sequel, we adopt
the adjective “rank-based” to conform with related methods in the literature (cf. Jin and others,
2003). By now, several authors have studied variable selection in the AFT model (cf. Datta and
others, 2007; Huang and others, 2007; Johnson, 2008; Cai and others, 2009). Among the many
available methods, only Johnson (2008) and Cai and others (2009) propose procedures based
on weighted logrank estimators. In this paper, we propose rank-based variable selection in the
partly linear model (1) by extending a stratified Gehan-type estimator (Chen and others, 2005).
The stratified estimator is advantageous in that it allows for consistent estimation of regression
coefficients without nonparametric smoothing via splines or kernels.

These methods were developed for a microarray application at Emory’s Winship Cancer In-
stitute relating gene expression data and time to prostate cancer recurrence, which may be
right-censored. Most modern model selection techniques perform variable selection on an arbi-
trary set of predictors. It is the user’s prerogative to control the input predictors, including some
collection of gene expression, clinical predictors or both. Unfortunately, the user’s choices may
not reflect well what the scientist really desires. If one selects variables on either gene expression
or clinical variables independently, the final model does not accurately reflect the complex corre-
lations among the clinical and gene expression data. If we include clinical predictors along-side
gene expression with no account of the variable type, then the potential problems are two-fold.
First, the final model may exclude a clinical variable which we know to be scientifically relevant.
Second, clinical predictors and gene expression data are treated as equals in the eyes of the statis-
tical learner. For users familiar with the underlying (optimization) techniques of specific model
selection methods, it is possible to circumvent the former problem by forcing clinical variables in
the model and, hence, only regularize the gene expression data. This method of forcing active
coefficients within regularized estimation does not address the latter problem, however, and is
possibly beyond the expertise of the average user. Estimation and variable selection in the partial
linear model has the potential to address both scientific issues simultaneously.

The main substantive contribution of the paper is the idea of jointly modeling clinical and
genetic predictors through the partly linear model and simultaneously performing model selec-
tion on genetic components. The end product of this procedure is a sparse model which includes
scientifically-relevant clinical covariates and data-relevant genetic components. The methodologi-
cal contributions of the paper are two-fold. First, we propose a new rank-based variable selection
procedure in the partly linear model for censored data where no similar method exists. The
second methodologic contribution is entirely computational. We propose a new algorithm for
regularized estimation in the AFT model which extends naturally to the partly linear model
for censored data. Existing computational strategies for regularized rank-based estimation in
the AFT model include local quadratic approximation atop simulated annealing (Johnson, 2008)
and a path-based algorithm (Cai and others, 2009). The algorithm by Cai and others (2009)
produces exact lasso coefficient estimates while Johnson’s (2008) method does not. Our new
algorithm produces precise lasso coefficient estimates through an intriguing extension of least
absolute deviation regression. Finally, the new procedure is propagated easily as the algorithm
can be adapted to the quantreg package in R.
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2. Methods

2.1. Background

A classic definition of the Gehan estimator (Prentice, 1978; Tsiatis, 1990) is defined as the
solution to the system of estimating equations, 0 = UG(β), where

UG(β) = n−1
n∑

i=1

n∑
j=1

δi (Xi −Xj) I{ei(β) ≤ ej(β)},

and ei(β) = log Yi − X′iβ. Evidently, UG(β) is the d-dimensional gradient of the convex loss
function, nLG(β), where

LG(β) =
n∑

i=1

n∑
j=1

δi{ei(β)− ej(β)}−,

c− = max(−c, 0). Jin and others (2003) approximated LG(β) by LM(β), where

LM(β) =
n∑

i=1

n∑
j=1

δi|ei(β)− ej(β)|+

∣∣∣∣∣M − β′
n∑

k=1

n∑
l=1

δk(Xl −Xk)

∣∣∣∣∣ ,
and M is a large constant. Because the loss LM(β) is written as the sum of absolute deviations,
the minimizer may be found using least absolute deviation (lad) regression (e.g. quantreg in R).

The Gehan estimator with lasso (Tibshirani, 1996) penalty is defined β̂G(1) = minβ{LG(β) +
λn

∑d
j=1 |βj |}. Both Johnson (2008) and Cai and others (2009) note that β̂G(1) is the solution

to a linear programming problem. However, using the approximation by Jin and others (2003),
the lasso-type estimator is equivalently written as minβ{LM(β) + λn

∑d
j=1 |βj |}. The signifi-

cance of the approximation is that the resulting constrained optimization may be carried out
through simple data augmentation. In an unpublished 2008 Emory University Technical Report,
B.A. Johnson showed that if the Gehan estimate is the solution to the lad regression of V on W,
then the regularized Gehan estimate is simply the solution to the lad regression of V∗ on W∗,
where V∗ = (V′,0′d)′, W∗ = (W′, λId)′, where 0d is a d-dimensional vector of zeros and Id is
an identity matrix of size d. The data augmentation technique for regularized lad estimates with
uncensored data was first proposed by Wang and others (2007).

2.2. The stratified Gehan estimator

Chen and others (2005) recently proposed a rank-based estimator in the partly linear model
for censored data. Their estimator extends the Gehan estimator by stratifying over levels of Z
and arguing that such procedure leads to a consistent estimator of the regression coefficients in
(1). Compared with the majority of estimators in partly linear model with uncensored data,
the estimator by Chen and others (2005) is different in that it does not require nonparametric
smoothing.

Intuitively, the estimator by Chen and others (2005) is defined by stratifying the sample into
Kn strata {S1, . . . , SKn

} according to user-defined levels of Z and minimizing a new stratified
loss function. Let Ik denote the indices of subjects belonging to strata Sk. Their argument is
that for subjects belonging to the same strata Sk, we have φ(Zi) = ck +Rn, for all i ∈ Ik, where
the constant ck varies by strata, k = 1, . . . ,Kn and Rn is an asymptotically negligible remainder
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term. Chen and others (2005) propose to minimize the loss function

LS(β) =
Kn∑
k=1

∑
i,j∈Ik

δi|ei(β)− ej(β)|+

∣∣∣∣∣∣M − β′
Kn∑
k=1

∑
l,m∈Ik

δm(Xl −Xm)

∣∣∣∣∣∣ ,
for a large number M , which is a direct generalization of the approximate Gehan loss LM (β)
above. Naturally, the `1-regularized stratified estimator is defined

β̂S(1) = min
β

LS(β) + λn

d∑
j=1

|βj |

 ·
When Kn = 1, the stratified estimator β̂S(1) reduces to the Gehan estimator β̂G(1).

2.3. Operating characteristics

Due to space limitations, we briefly outline the basic large sample properties for our lasso-
type extension of the stratified Gehan estimator β̂S(1). To place the concepts in proper context,
it will be easier to work with general convex loss function. Without loss of generality, define
a convex loss function L•(β), where β belongs to a compact parameter space, β0 is the true
value for β, and we assume that limn−1L•(β) converges strongly to a finite limit, uniformly in
β. Define the lasso-type estimator β̂•(1) = minβ{n−1L•(β) + λn

∑
j |βj |}, the gradient vector

U(β) = (∂/∂β)L•(β), the slope matrix A such that n1/2U(β) − n1/2U(β0) ∼= (β − β0)′A and
assume that n1/2U(β0) →d N(0,B). Then, as n1/2λn → λ0 ≥ 0, one can show that, under
suitable regularity conditions, n1/2(β̂•(1) − β0)→d argmin{Ω(u)}, where

Ω(u) = u′w + u′Au + λ0

d∑
j=1

[ujsgn(β0j)I(βj 6= 0) + |uj |I(β0j = 0)] , (2)

and w is a normal random vector with covariance B. The large sample properties of Tibshirani’s
(1996) lasso, including the expression in (2), are due to Knight and Fu (2000). The local asymp-
totic properties may be extended to specific loss functions as special cases. Recently, Huang and
others (2006) extended the (2) to inverse probability weighted estimators while Cai and others
(2009) considered the extension of (2) to the Gehan estimator, i.e. L•(β) = LG(β), through a
novel application of U -processes.

Finally, substitute L•(β) = LS(β) and let β̂S = minLS(β). Chen and others (2005) have
shown that, under regularity conditions, n1/2(β̂S−β0)→d N(0,A−1

S BSA−1
S ), where AS and BS

are defined in Chen and others (2005, Appendix). By coupling the conditions in Cai and others
(2009) along with the conditions in Chen and others (2005), we expect that n1/2(β̂S(1) − β0)
converges in distribution to argmin{ΩS(u)}, where ΩS(u) is defined exactly as in (2) but with
AS and BS replacing A and B, respectively. Although the statement here is not rigorous, it can
be made so under appropriate technical conditions.

3. Application to breast cancer recurrence

Street and others (1995) have studied classification models for breast cancer tumor types and
regression models for breast cancer recurrence. Our primary interest lies in the latter regression



Rank-based estimation in the `1-regularized partly linear model for censored data 5

model for censored data. We adopt the partly linear model for censored data in (1) where T is
time (in months) to breast cancer recurrence, Z = (Z1, Z2)′ is tumor size (Tsize) and number of
lymph nodes (Lnode), respectively, and X = (X1, . . . , X30)′ is a 30-dimensional feature vector.
The feature vector X is taken from from a digitized image of a fine needle aspirate of a breast
mass and describe characteristics of the cell nuclei present in the image. The data consist of three
summary statistics (mean, SE, worst) for each of ten features: radius, texture, perimeter, area,
smoothness, compactness, concavity, concave points, symmetry, and fractal dimension. These
data are freely available on the UCI repository of machine learning databases (Blake and Merz,
1998). Although a total of 198 samples were collected, only 47 (23.7% of 198) samples were taken
from women who experienced breast cancer recurrence. A Kaplan-Meier curve of failure time
shows that support of the failure time distribution is modest compared to the support of the
follow-up times.

This same data set (i.e. the Wisconsin prognostic breast cancer (WPBC)) was analyzed previ-
ously by Bühlmann and Hothorn (2007) using inverse-probability weighted boosting from which
they concluded the following ten variables were important: the mean radius, texture, perime-
ter, smoothness, and symmetry; the standard error (SE) of texture, smoothness, concavepoints,
and symmetry; and “worst” concavepoints. We analyzed the WPBC data using our regularized
rank-based estimators. Our analyses assume nonlinear effects in one or both of the clinical vari-
ables, tumor size or number of lymph nodes. The levels of tumor size were always determined
by quantiles while number of lymph nodes was coded by hand. With two levels, the latter strata
are defined by zero or greater than zero lymph nodes. For three levels, we split the “greater than
zero” group into those with one lymph node and greater than one lymph node. Finally, with four
levels, we have a “zero” level, a “one” level, “one to four” lymph nodes, and “greater than four”
lymph nodes level. We consider univariate stratification for tumor size and lymph nodes sepa-
rately in Table 1 while Table 2 considers two-way stratified estimators. For comparison purposes,
Table 2 also includes the Gehan lasso (i.e. Kn = 1) with and without tumor size and number of
lymph nodes. We tuned the regularization parameter through five-fold cross-validation.

Table 1. Coefficient estimates for rank-based partial linear model stratified on tumor
size or number of lymph nodes only. Table entries are multiplied by 1000.

Tumor size only Lymph node only

Term Kn = 2 3 4 5 9 2 3 4

mean symmetry 129 164 311 237 283 168 208 224

mean fractaldim 14 0 198 0 0 73 0 0

SE perimeter 0 0 -27 0 0 0 0 45

SE compactness 0 0 -76 0 0 0 0 0

worst perimeter -469 -521 -494 -476 -426 -470 -440 -594

worst smoothness 0 0 -223 0 0 0 0 -25

worst concavity 0 0 -18 0 0 0 0 -50

In Table 1, we immediately notice that mean symmetry and worst perimeter are strongly
associated with breast cancer relapse, a result that appeared consistently across different numbers
of strata. Interestingly, the stratified estimator with Kn = 4 using only tumor size chose a very
complex model compared to the other models. We attribute this to be an artifact of the error in
cross-validation. Compared to the ten variables selected by Bühlmann and Hothorn (2007), only
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mean symmetry is chosen in both procedures. However, we note that worst perimeter is correlated
with many of the predictors in the Bühlmann and Hothorn (2007) model — for example, worst
perimeter is highly correlated with mean radius (r = 0·92), mean perimeter (r = 0·93), and
modestly correlated with worst concave points (r = 0·50). Hence, some model differences may
be explained by multicollinearity.

Analytic results for bivariate stratification over tumor size and numbers of lymph nodes are
presented in Table 2. The conclusions from results in Table 2 are similar to those reported in
Table 1. Now, however, mean fractal dimension is also mildly related to breast cancer recurrence
in addition to the two variables from Table 1. Of the seven independent variables in Table 1, only
mean symmetry agrees with any of ten variables in Bühlmann and Hothorn (2007). Finally, we
found it was difficult to cross-validate the stratified estimator as the number of levels increased
and this consideration dictated why the five- and nine-level analyses presented in Table 1 could not
be extended in Table 2. This difficulty reflects well-known finite sample limitations of stratified
estimators.

Table 2. Coefficient estimates for regularized Gehan and rank-based partial linear model through
bivariate stratification. Table entries are multiplied by 1000.

Gehan 2-way stratification (Kn Tumor size, Kn Lymph nodes)

Term w/o Zi w/Zi (2,2) (2,3) (2,4) (3,2) (3,3) (3,4) (4,2) (4,3)

Tsize -69

Lnode -240

mean symmetry 180 172 6 341 175 31 300 466 31 345

mean fractaldim 8 30 86 50 0 27 213 182 81 16

SE texture 0 0 0 0 0 0 0 58 0 0

SE perimeter 0 0 0 0 0 0 0 -114 0 0

SE compactness 0 0 0 0 0 0 0 -29 0 0

SE symmetry 0 0 0 0 0 0 -61 -96 0 0

worst radius 0 -72 0 0 0 0 0 0 0 0

worst texture 0 0 0 0 0 0 0 34 0 0

worst perimeter -603 -426 -291 -390 -433 -296 -393 -449 -272 -373

worst smoothness 0 0 0 -84 -72 0 -327 -489 0 -80

worst concavity 0 0 0 0 -8 0 0 -42 0 0

4. Simulation Studies

We conducted numerous simulation studies to assess the cost for ignoring the nonlinear effect in
(1) and fitting an ordinary AFT model instead. Due to space limitations, the simulation details
have been moved to online supplementary material and only our conclusions are summarized
below (See http://www.biostatistics.oxfordjournals.org). First, when the true function φ is linear,
the model precision from ordinary Gehan lasso beats the stratified estimator, which agrees with
intuition. At the same time, it is interesting to note that stratified estimator gradually achieves
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similar operating characteristics as the unstratified estimator as the sample size increases and
number of strata Kn increases. Nevertheless, the stratified estimator is far too cumbersome if the
unknown function φ is indeed linear in Zi. Now, the big improvements in the stratified estimator
are seen when the unknown function φ is nonlinear. For example, when the sample size n = 75
and σ = 1·5, the partial model error (PME) is 7.49 and 4.73 for the unpenalized and regularized
Gehan, respectively. We compare this to the PME of the unpenalized and regularized stratified
estimator, 1.03 and 0.70, respectively. Hence, there is an average seven-fold increase in PME if
we fit the Gehan lasso when the true underlying model is a nonlinear (i.e. quadratic) function of
Zi.

5. Remarks

This paper describes rank-based estimation and variable selection in the `1-regularized par-
tial linear model for censored data. The proposed regularized estimator extends the stratified
rank-based estimator by Chen and others (2005). Computationally, we offer a novel strategy for
computing regularized Gehan estimates and extend this strategy to stratified estimator. Theo-
retical properties of the regularized Gehan estimator have been established elsewhere (Johnson,
2008; Johnson and others, 2008; Cai and others, 2009) and we expect that similar properties
apply to the stratified estimator under suitable regularity conditions. While we have only fo-
cused on lasso estimation, the stratified estimator can accomodate other penalty functions (cf.
Johnson and others, 2008) with no additional difficulty. Compared with the computational meth-
ods proposed by Johnson (2008) and Cai and others (2009), the methods in this paper have the
advantage that they may be easily implemented in standard software.

A premise of this paper is that many applications of variable selection on gene expression are
naive in that they do not adequately adjust for important clinical variables. In this paper, we
suggest using the partly linear model where clinical predictors enter nonlinearly and gene expres-
sion variables enter linearly. If clinical predictors also enter the statistical model linearly, then
model (1) reduces to an ordinary AFT model. In simulation studies available as supplementary
material (http://www.biostatistics.oxfordjournals.org), we show that there can be a potentially
large price to pay in terms of model precision when the true underlying model is partly linear but
we fit a linear model instead. Because many clinical predictors are already known to be related
to cancer recurrence, building recurrence models through model (1) by selecting genetic features
after adjusting for nonlinear clinical effects makes better scientific sense and potentially reduces
model error at the same time.
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