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1. Simulation Studies

Multiple simulation studies were conducted to assess the effect of model misspecification in
rank-based variable selection for censored data. Specifically, we consider the effect of fitting the
regularized Gehan estimator (Johnson, 2008; Cai and others, 2009) when the true underlying
model is the partial linear model,

log Ti = φ(Zi) + X′iβ + εi·

Our simulation study details are adapted from those given by Chen and others (2005) and all
calculations were conducted in R using the quantreg package. We assume that the true regression
coefficients are β = (3, 3/2, 0, 0, 2, 0, 0, 0)′, εi ∼ N(0, σ2) and mutually independent of (Zi,Xi).
The predictors Xi followed a standard normal with the correlation between the jth and kth
components of X equal to 0·5|j−k|. The random variable Zi was correlated with Xi through the
relation Zi = γ1X1i +γ2X2i +γ3X3i +Ui, where (γ1, γ2, γ3) = (1/4, 1/4, 1/2) and Ui is Un(−5, 5)
and completely independent of all other random variables. As in Chen and others (2005), we
considered quadratic and linear effects, φ(Zi) = Z2

i and φ(Zi) = 2Zi, respectively. Finally,
censoring random variables were simulated according to the rule, Ci = φ(Zi) + X′iβ +U∗i , where
U∗i follows the uniform distribution Un(0, τ) with τ = 8. Our simulation results are displayed in
Table 1.

Because the stratified estimator does not attempt to estimate the nonlinear effect φ, standard
definitions of model error do not apply. Instead, we define the partial model error, PME ≡
(β̂S(1) − β)′ [E(XX′)] (β̂S(1) − β), which has the heuristic interpretation as additional variation
in the model resulting from β̂S(1) after adjusting for Zi. The median of PME over Monte Carlo
data set is reported in Table 1. The relative median PME (RPME) is defined as the lasso median
PME divided by the unpenalized median PME and summarizes the average improvement in PME
due to lasso regularization and variable selection. In addition, we monitor the average number of
correct (C) and incorrect (I) zeros over Monte Carlo data set. For comparison purposes, we also
computed the Gehan and Gehan lasso estimates assuming a linear model in Zi and Xi. In each
instance of lasso, five-fold cross-validation was used to tune the regularization parameter λ.
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Table 1. Simulation results comparing regularized Gehan and stratified estimator

Quadratic Linear

PME PME

Method Unpen lasso RPME C I Unpen lasso RPME C I

n = 75, σ = 1·5
Gehan 7.49 4.73 63.15 1.39 0.20 0.30 0.24 80.00 1.32 0

Strat. (Kn = 2) 6.98 4.18 59.89 2.40 0.32 2.34 1.39 59.40 1.79 0.01

Strat. (Kn = 4) 1.81 1.46 80.66 3.08 0.08 0.83 0.51 61.45 2.51 0

Strat.∗ (Kn = 8) 1.03 0.70 67.96 3.85 0.02 0.51 0.24 47.05 3.58 0

n = 75, σ = 3

Gehan 10.05 6.13 61.00 1.45 0.25 1.17 0.83 70.94 1.33 0

Strat. (Kn = 2) 9.66 5.23 54.14 2.48 0.38 3.03 1.75 57.76 2.25 0.01

Strat. (Kn = 4) 3.88 2.52 64.95 3.06 0.23 1.58 1.08 68.35 2.85 0.01

Strat.∗ (Kn = 8) 2.60 1.78 68.46 3.54 0.16 1.66 1.05 63.25 3.55 0.04

n = 100, σ = 1·5
Gehan 4.91 3.05 62.12 1.74 0.12 0.20 0.15 75.00 1.60 0

Strat. (Kn = 2) 4.67 2.74 58.67 2.56 0.17 1.66 0.94 56.63 2.23 0

Strat. (Kn = 4) 1.26 0.92 73.02 2.86 0.02 0.58 0.32 55.17 2.91 0

Strat.∗ (Kn = 8) 0.67 0.56 83.58 3.97 0.02 0.35 0.22 62.86 3.52 0

n = 100, σ = 3

Gehan 7.20 4.45 61.81 1.73 0.20 0.87 0.61 70.11 1.44 0

Strat. (Kn = 2) 7.04 3.72 52.84 2.72 0.28 2.43 1.36 55.97 2.34 0

Strat. (Kn = 4) 2.53 1.92 75.89 3.10 0.08 1.35 0.78 57.78 2.65 0

Strat.∗ (Kn = 8) 1.69 1.08 63.91 3.62 0.02 1.03 0.65 63.11 3.38 0.01

∗ Tune λ using generalized cross-validation in Johnson (2008)

First, when the effect φ is linear, the Gehan lasso beats the stratified estimator which confirms
our intuition. At the same time, it is interesting to note that stratified estimator gradually
achieves similar operating characteristics as the unstratified estimator as the sample size increases
and number of strata Kn increases. Nevertheless, the stratified estimator is far too cumbersome
if the unknown function φ is indeed linear in Zi. Now, the big improvements in the stratified
estimator are seen when the unknown function φ is nonlinear. For example, when the sample size
n = 75 and σ = 1·5, the partial model error is 7.49 and 4.73 for the unpenalized and regularized
Gehan, respectively. We compare this to the PME of the unpenalized and regularized stratified
estimator, 1.03 and 0.70, respectively. Hence, there is an average seven-fold increase in PME if
we fit the Gehan lasso when the true underlying model is a nonlinear (i.e. quadratic) function of
Zi. Finally, it comes as no surprise that the stratified estimator performs better as the number of
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strata increase; such finding agrees with Chen and others (2005) and with stratified estimators,
in general. Of course, the small sample improvement comes with added computational burden.
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