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Summary

Once treatment is found to be effective in clinical studies, attention often

focuses on optimum or efficacious treatment delivery. In treatment duration-

response studies, the optimum treatment delivery refers to the treatment

length that optimises the mean response. In many studies, the treatment

length is often left to the discretion of an attending investigator or physician

but may be abruptly terminated because of treatment-terminating events.

Thus, a recommended treatment length often delineates a ‘treatment dura-

tion policy’ which prescribes that treatment be given for a specified length

of time or until a treatment-terminating event occurs, whichever comes first.
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Estimating a functional relationship between the response and a treatment

duration policy, continuously in time, is the focus of this paper.

Some key words: Confounding; Infusion trial; Missing data; Survival analy-

sis.

1. Introduction

Once one treatment is found to be superior in a randomised trial of competing

treatments, attention often focuses on determining the optimum treatment

dose or length that minimises or maximises study endpoint. While subjects

are randomly assigned to the treatment or placebo arm, the actual dose or

amount of treatment a subject receives is not randomised. In studies where

treatment is given continuously over time, several factors often determine a

subject’s actual treatment level. First, a patient may experience an adverse

event which prematurely terminates the treatment process. Secondly, the

decision to stop or continue treatment, when an adverse event has not al-

ready occurred, is left to the patient’s physician. The ESPRIT, Enhanced

Suppression of the Platelet IIb/IIIa Receptor with Integrilin Therapy, infu-

sion study, which motivated this research and discussed in § 5, is one such

study where this design was implemented. We note that the realisation of

such a composite event may also be one of the adverse events that would

necessitate treatment termination. Patients were initially randomised to re-

ceive either the experimental treatment regimen or placebo regimen. Then,

once it was determined that the treatment was indeed effective, investigators

focused their interest on an optimal infusion length. This investigation is

difficult for the two reasons stated above, namely, that patients who experi-

enced an infusion-terminating event did not complete the treatment process
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and patients were not randomised to infusion lengths.

Define a treatment duration policy for t units of time as a recommendation

to treat for t units of time or until a treatment-terminating event occurs,

whichever comes first. In order to conceptualise properly a duration-response

relationship in our particular setting, we introduce the ideas of potential

random variables (Rubin, 1974). We define the potential random variable C

as the time at which a randomly selected individual from a population would

have a treatment-terminating event, if continuously treated, and by Y ?
C the

response of the individual if this occurs. We also define the individual’s

potential response Y ?
t as the response if treatment were terminated at time

t, for t < C. In terms of these potential random variables, the policy of

treating an individual for t units of time or until a treatment-terminating

event results in the response Y ?
t∧C , where t∧C denotes the minimum of t and

C. This may also be written as

Y ?
t∧C = Y ?

t I(C > t) + Y ?
CI(C ≤ t). (1)

Johnson & Tsiatis (2004) have shown how to estimate consistently the pop-

ulation mean response for this treatment duration policy, E(Y ?
t∧C), when

treatment duration can take on only a finite number of values, t1, . . . , tK. In

truth, treatment duration in such studies is a continuous random variable.

Hence, in order to apply the methods of Johnson & Tsiatis (2004), the data

had to be discretised in an ad hoc fashion. Here we make the more realis-

tic assumption that treatment duration is a continuous random variable and

consider the duration-response relationship as a continuous function in time
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through a finite number of parameters,

E(Y ?
t∧C) = m(t, β), (2)

for β = (β1, . . . , βp)
T. Keep in mind that our model m(t, β) is only a function

of t but is indexing a treatment duration policy t ∧ C, that is, the policy

which treats for t units of time or until a treatment-terminating event occurs,

whichever comes first.

2. Methods and Assumptions

The collection of random variables {C, Y ?
C , Y

?
t , t < C} defined above are

referred to as potential random variables, or counterfactuals, because, con-

trary to fact, they may not actually be observed. In contrast, for a randomly

selected individual from our population, the observable random variables

are given by {Y, U,∆}, where Y denotes the observed response, U denotes

the actual continuously-varying, treatment duration, and ∆ is an indicator

variable such that ∆ = 1 when treatment duration was stopped by choice

and ∆ = 0 when treatment duration was stopped because of treatment-

terminating events. In our motivating example, the response Y is a binary

indicator, but the methods proposed are applicable for continuous as well as

discrete response variables.

We assume that the observed response Y may be written as the following

function of potential outcomes Y ?
t , for t ≤ C:

Y = Y ?
U = ∆Y ?

U + (1 − ∆)Y ?
C . (3)

Along with the data (Y, U,∆), we assume that additional, possibly time-

dependent covariate information is also available. Let Z(u) denote the value
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of a vector of covariates for an individual at time u, where u is measured as

time from the individual’s entry into the study. We define ZH(t) to be the

history of covariate information up to and including time t, that is

ZH(t) = {Z(u), u ≤ t}.

Define the observable cause-specific hazard function to be

λ{t, ZH(t)} = lim
h→0

h−1pr{t ≤ U < t+ h,∆ = 1|U ≥ t, ZH(t)}. (4)

A key assumption that allows us to estimate consistently the parameter β

from a random sample of observed data is given by

λ{t, ZH(t)} =

limh→0 h
−1pr

{

t ≤ U < t+ h,∆ = 1|U ≥ t, ZH(t), CI(U ≥ t), Y ?
x , t ≤ x ≤ C

}

.(5)

In words, assumption (5) implies that, given that a patient has continuously

received treatment up to and including time t without a treatment-censoring

event, and given the patient’s covariate history up to and including time t,

the decision to terminate or continue a patient’s treatment at time t does not

depend on future prognosis. Such an assumption is plausible if information

about an individual up until time t, which may be prognostic and which an

investigator may use to make decisions on treatment duration, is captured in

the data ZH(t). In the epidemiological literature, assumption (5) is referred

to as ‘no unmeasured confounder.’

3. The Estimator and Its Properties

3·1. Motivation

We now address how to estimate the p-dimensional parameter vector β,

where m(t, β) is the hypothesised mean model in (2), from a sample of ob-

served data, {Yi, Ui,∆i, Z
H
i (Ui)}, i = 1, . . . , n. As a result of the censoring of
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treatment duration when a patient experiences an adverse event and because

of the potential confounding, it is not obvious how one can derive an estima-

tor for β directly from the data in an observational study. In contrast, if we

had designed an experiment where treatment duration policy was assigned to

patients at random, then unbiased estimating equations and estimators for

β can be derived easily. This hypothetical randomised experiment is an ex-

ample of what Murphy et al. (2001) refer to as a random dynamic treatment

regime. Murphy et al. (2001) derived the Radon-Nikodym derivative of the

distribution of the data from this hypothetical randomised study with respect

to the distribution of the data from the observational study under assumption

(5) of no unmeasured confounder. Therefore, the strategy is to derive un-

biased estimating equations for β under the hypothetical randomised study,

which can be done easily, and then to weight these estimating equations by

the Radon-Nikodym derivative to obtain unbiased estimating equations for

the observational study. We now give the details of this approach.

Let the random variable T denote the assigned treatment duration policy

in our hypothetical study. In our ideal experiment, we would randomise

individuals to treatment duration policy T = t according to some probability

density h(t). The density h(t) is that of a continuous random variable which is

known by design and has support on the interval [τl, τu] chosen to correspond

to a region of treatment duration actually used in the observational study.

If an individual was randomised to policy T = t, then this individual would

receive treatment for t units of time or until a treatment-terminating event,

whichever came first. The data from such an experiment can be summarised

as {Yi, Ti,∆i, (1 − ∆i)Ci}, i = 1, . . . n, where, for the ith individual in our
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sample, Yi denotes the observed response, Ti the treatment duration policy,

∆i is the indicator variable for which, as before, ∆i = 0 corresponds to

the case where treatment is stopped prematurely because of a treatment-

terminating event and Ci is the time to the treatment-terminating event,

observed only if ∆i = 0.

For such a design, the parameter β can be estimated using generalised

estimating equations defined by Liang & Zeger (1986) as

n
∑

i=1

ψ∗(Yi, Ti, β) = 0, (6)

where ψ∗(y, t, β) = w(t, β){y −m(t, β)}, and w(t, β) is a p-dimensional vec-

tor of functions of time t and the parameters β. The optimal generalised

estimating equation is given by

ψ†(y, t, β) = mβ(t, β)V −1(t){y −m(t, β)},

where mβ(t, β) is the p-dimensional gradient of m(t, β) with respect to β and

V (t) = var(Y |T = t).

Unlike in the hypothetical randomised study described above, in the ob-

servational study we can never observe Ti if ∆i = 0. Consequently, we

now consider how we would estimate the parameter β from the idealised

randomised study if we only observed data (Yi, Ui,∆i), i = 1, . . . , n, where

Ui = min(Ti, Ci).

We first note that the estimating function, divided by n, i.e. n−1
∑n

i=1 ψ
∗(Yi, Ti, β),

given in (6), is an unbiased estimator for ER{ψ
∗(Y, T, β)}, where we use

ER(·) to denote expectation under this hypothetical randomised study. The

function ψ∗(Y, T, β) is referred to as an unbiased estimating function as its
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expectation, under the truth, β = β0, is equal to zero and can be used to

derive a consistent and asymptotically normal estimator of β by solving the

estimating equation (6). The expectation ER{ψ
∗(Y, T, β)} can be written as

ER{∆ψ
∗(Y, T, β)+(1−∆)ψ∗(Y, T, β)} = ER{∆ψ

∗(Y, U, β)+(1−∆)ψ∗(Y ?
C , T, β)}.

(7)

As a consequence of randomisation, T is independent of the potential

outcomes C and Y ?
C . Consequently, the expectation of the second term of

the sum in the right-hand side of equation (7) can be derived as

ER{(1 − ∆)ψ∗(Y ?
C , T, β)}

= ER[ER{(1 − ∆)ψ∗(Y ?
C , T, β)|∆, C, Y ?

C}]

= ER[(1 − ∆)ER{ψ
∗(Y ?

C , T, β)|T > C,C, Y ?
C}]

= ER

{

(1 − ∆)

H(C)

∫ ∞

C

ψ∗(Y ?
C , u, β)h(u)du

}

= ER

{

(1 − ∆)

H(U)

∫ ∞

U

ψ∗(Y, u, β)h(u)du

}

, (8)

where H(x) =
∫∞

x
h(u)du is the survival function pr(T ≥ x). For notational

convenience, we take the integral from U to ∞ in equation (8). Keep in mind,

however, that the density h(u) only has support from [τl, τu] and hence the

integral is actually restricted from min(U, τl) to τu.

Replacing the second term of the sum in the right-hand side of (7) by the

expression in (8), we deduce that the expectation of the estimating function

ψ∗(Y, T, β) is equal to the expectation of

∆ψ∗(Y, U, β) +
(1 − ∆)

H(U)

∫ ∞

U

ψ∗(Y, u, β)h(u)du. (9)

Consequently, (9) is an unbiased estimating function which can be used to

derive a consistent, asymptotically normal estimator of β from the ideal
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randomised study, using the data (Yi, Ui,∆i), i = 1, . . . , n, by solving the

estimating equation

n
∑

i=1

{

∆iψ
∗(Yi, Ui, β) +

(1 − ∆i)

H(Ui)

∫ ∞

Ui

ψ∗(Yi, u, β)h(u)du

}

= 0. (10)

The randomised experiment described above is an example of a random

dynamic treatment regime as defined by Murphy et al. (2001). Of course,

in the observational study, individuals were not randomised by design. How-

ever, because of the assumption of no unmeasured confounder, given by (5),

we can use the theory developed by Murphy et al. (2001), which provides

a Radon-Nikodym derivative, to connect the probability distribution under

the idealised randomised study, denoted by prR(·), to the probability distri-

butions for the actual observational study, denoted by pr(·). Under some

regularity conditions, including that

pr[λ{t, ZH(t)} > 0 for all t such that h(t) > 0] = 1, (11)

Lemma 4.1 of Murphy et al. (2001) can be used to deduce that the distri-

bution of (Y, U,∆) under prR(·) is absolutely continuous with respect to the

distribution of (Y, U,∆) under pr(·), and a version of the Radon-Nikodym

derivative is

E

[

∆
h(U)

f{U,ZH(U)}
+ (1 − ∆)

H(U)

K{U,ZH(U)}
|Y = y, U = u,∆ = δ

]

, (12)

where K{t, ZH(t)} = exp
[

−Λ{t, ZH(t)}
]

, Λ{t, ZH(t)} =
∫ t

0
λ{u, ZH(u)}du

and f{t, ZH(t)} = λ{t, ZH(t)}K{t, ZH(t)}. In the Appendix we show how

the Radon-Nikodym derivative given by equation (12) falls out from the

Murphy et al. (2001) theory.
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Since (12) is the Radon-Nikodym derivative, this implies that

ER

{

∆ψ∗(Y, U, β) +
(1 − ∆)

H(U)

∫ ∞

U

ψ∗(Y, u, β)h(u)du

}

= E

([

∆
h(U)

f{U,ZH(U)}
+ (1 − ∆)

H(U)

K{U,ZH(U)}

]

×

{

∆ψ∗(Y, U, β) +
(1 − ∆)

H(U)

∫ ∞

U

ψ∗(Y, u, β)h(u)du

})

= E

[

∆ψ∗(Y, U, β)
h(U)

f{U,ZH(U)}

+
(1 − ∆)

K{U,ZH(U)}

∫ ∞

U

ψ∗(Y, u, β)h(u)du

]

. (13)

Letting D denote {U,∆, ZH(U)}, we define

ψ(Y,D, β) = ∆ψ∗(Y, U, β)
h(U)

f{U,ZH(U)}

+
(1 − ∆)

K{U,ZH(U)}

∫ ∞

U

ψ∗(Y, u, β)h(u)du. (14)

By the series of arguments given above we have shown that E{ψ(Y,D, β)}

is equal to the expectation of the unbiased, under prR(·), estimating func-

tion given in equation (6), namely ψ∗(Y, T, β). Consequently, if the hazard

function λ{t, ZH(t)} were known to us, then ψ(Y,D, β) is an unbiased, un-

der pr(·), estimating function. Hence, a consistent asymptotically normal

estimator for β could be derived by solving the estimating equation

n
∑

i=1

ψ(Yi, Di, β) = 0. (15)

Since the estimator above depends on λ{t, ZH(t)}, which is unknown, it

must be estimated. A popular and flexible model is the proportional hazards

model of Cox (1972), in which

λ{t, ZH(t)} = λ0(t) exp{γTZH(t)}. (16)
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The estimating function ψ(Y,D, β) will have mean zero for arbitrary h(t)

as long as assumption (11) is satisfied, although we expect the choice of h(t)

to have an impact on the efficiency of the resulting estimator. In fact, since

estimating equations can be defined up to a proportionality constant, the

function h(t) can be any positive function with finite integral
∫ τu

τl

h(u)du. In

conjunction with (16), consider the convenient choice for h(t), i.e. h(t) =

λ0(t). Using the definition of λ{t, ZH(t)} defined in (16), H(t) = Λ0(t),

and letting T denote the interval [τl, τu], we define our proposed estimating

function as

ψ(Y,D, β, γ) =

∆ψ∗(Y, U, β)I(U ∈ T )

g{U,ZH(U), γ}

+
(1 − ∆)I(U ∈ T )

K{U,ZH(U), γ}

∫

T ∩{U<t}

ψ∗(Y, t, β)dΛ0(t), (17)

where g{t, ZH(t), γ} = exp{γTZH(t)}K{t, ZH(t)}. For notational conve-

nience, define

Υ(β) =

∫

T ∩{U<s}

ψ∗(Y, s, β)dΛ0(s),

and Υi(β) as Υ(β) with (Y, U) replaced with (Yi, Ui). Our parameterisation

of λ{t, ZH(t)} and our choice for h(t) allows us to derive uniformly consistent

estimators for g{t, ZH(t)}, K{t, ZH(t)}, and Υ(β) using standard counting

process methodology (Andersen et al., 1993, VII.2).

3·2. Asymptotic properties

Our proposed estimator is the solution β̂n to

n
∑

i=1

ψ(Yi, Di, β, γ) = 0,
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with g{t, ZH , γ0}, K{t, ZH(t), γ0} and Υi(β, γ0) replaced by their estimated

quantities, g{t, ZH(t), γ̂n}, K{t, ZH(t), γ̂n} and Υi(β, γ̂n), respectively, where

Υi(β, γ) =

∫

T ∩{U<s}

ψ∗(Yi, s, β)dΛ̂0(s, γ) (18)

=

∫

T ∩{U<s}

ψ∗(Y, s, β)dN(s)
∑n

k=1 exp{γtZH
k (s)}Rk(s)

,

Ni(t) = I(Ui ≤ t,∆i = 1), N(t) =
∑n

i=1Ni(t) and Ri(t) = I(Ui ≥ t).

Here, we also show that our estimator β̂n is consistent and show that

n1/2(β̂n−β0) is asymptotically normal under the proposed conditions. Define

S(r)(t, γ) = n−1
∑n

k=1Rk(t)e
γTZH

k
(t)ZH⊗r

k (t), s(r)(t, γ) = E{S(r)(t, γ)},

Z̄H(t, γ) = S(1)(t,γ)

S(0)(t,γ)
, µ(t, γ) = s(1)(t,γ)

s(0)(t,γ)
,

for r = 0, 1, 2, where, for a column vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aaT.

Let γ̂n be the maximum partial likelihood estimator (Cox, 1972) so that

n1/2(γ̂n − γ0) = n−1/2

n
∑

i=1

Σ−1
γ

∫ ∞

0

{

ZH
i (u) − µ(u, γ0)

}

dMi(u) + op(1), (19)

where Mi(t) = Ni(t) −
∫ t

0
exp{γTZH

i (u)}Ri(u)dΛ0(u) and Σγ is

∫ ∞

0

E
[

{

ZH(u) − µ(u, γ0)
}{

ZH(u) − µ(u, γ0)
}T

exp{γT
0 Z

H(u)}R(u)
]

dΛ0(u).

Let θ = (βT, γT)T be the p+q column vector of all the parameters and define

J(θ) as the sum of three p× q matrices, i.e.

J(θ) = P (θ) +Q(θ) +G(θ),
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where

P (θ) = −

∫ τu

0

E{a(u, θ)}µ(u, γ)dΛ0(u)

Q(θ) = E{b(θ)} +

∫ τu

0

E{c(u, θ)}µ(u, γ)dΛ0(u)

G(θ) = −

∫

T

E{d(u, θ)}µ(u, γ)dΛ0(u)

a(u, θ) = ψ(Y,D, β, γ) exp{γTZH(u)}I(U ≥ u)

b(θ) = −
∆ψ∗(Y, U, β)I(U ∈ T )ZH(U)

g{U,ZH(U), γ}

c(u, θ) = ψ(Y,D, β, γ) exp{γTZH(u)}ZHT (u)I(U ≥ u)

d(u, θ) =
(1 − ∆)ψ∗(Y, u, β)I(U < u)

K{U,ZH(U), γ}
.

Then the ith influence function is given by

h(Yi, Di, θ0) =

A−1(θ0)

{
∫ τu

0

[

J(θ0)Σ
−1
γ {ZH

i (u) − µ(u, γ0)}+

E{a(u, θ0) + d(u, θ0)}

s(0)(u, γ0)

]

dMi(u) + ψ(Yi, Di, β0, γ0)

}

,

where A(θ0) is the p × p matrix of E {(−∂/∂β)ψ(Yi, Di, β, γ)}, with β and

γ evaluated at their true values. A consistent estimator for the asymptotic

variance of n1/2(β̂n − β0) is given by

n−1
n
∑

i=1

ĥ(Yi, Di, θ̂n)ĥT(Yi, Di, θ̂n),

where all expectations are estimated by their respective sample mean estima-

tors and h(Yi, Di, θ̂n) is estimated using methods for estimating martingale

residuals (Fleming & Harrington, 1991, §4.5). An outline of the derivation

of the asymptotic variance is given in the appendix.
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4. Numerical Studies

We conducted several numerical studies to evaluate the small sample prop-

erties of our estimator, some of which we show here. Our goal is to simulate

data for a Bernoulli response using a linear logistic model, i.e.

m(t, β) = F{β0 + β1(t− tµ)},

where F (t) = (1 + e−t)−1 and tµ is a centring constant.

To simulate the data for this model, we begin by independently simu-

lating the treatment censoring random variable C and a potential response

threshold W following distributions described below. Then we propose that

Y ?
t follow the rule

Y ?
t =

{

1 if t < min(C,W )
0 if W ≤ t < C,

and Y ∗
C = 0. Now, we want

pr(Y ?
t∧C = 1) = pr{min(C,W ) > t} = pr(C > t)P (W > t)

to follow the linear logistic model m(t, β). If we take pr(W > t) = {pr(C >

t)}θ, then some simple algebra shows that

pr(C > t) = [F{β0 + β1(t− tµ)}]1/(θ+1) .

Such a distribution is easily generated. A similar strategy is employed for

the random variable W .

Continuing, we simulate our confounding random variable Z as normal

with conditional mean α0 +α1 min(C,W ) and conditional variance σ2
z . Next,

we simulate the potential treatment duration T as Weibull with shape r and

hazard

λ(t;Z) = rtr−1ρr exp(γZ).
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Finally, if T < C, then U = T , ∆ = 1 and Y = Y ?
T . If T ≥ C, then U = C,

∆ = 0 and Y = Y ?
C = 0. We repeat this process for n subjects.

While some parameters are chosen to reflect aspects of the dataset in

our example, others are chosen for convenience and simplicity of exposition.

In the simulation scenarios to follow, r = 5, ρ = 0.04, and γ = −0.5 were

chosen to yield a density for T with mode around 25 hours and an inverse

relationship between the variables Z and T , i.e. large Z implies small λ(t;Z).

For the distribution of Z, we chose the parameters α0 = 0 and σz = 0.25,

but allowed α1 to vary in our simulation scenarios to reflect different degrees

of confounding. Finally, we chose θ = 3, tµ = 25, β0 = 0 and β1 = −1 in our

linear logistic model.

[Table 1 about here]

[Table 2 about here]

In Table 1, we see that the bias is minimal and that the Monte Carlo

standard errors match well with the standard error estimates. In Table 2,

we also see that our estimator covers the true value at the nominal level. We

compare our estimators to two maximum likelihood estimators, β̃ and β∗.

In our simulations, β̃ is the usual estimator from a logistic regression model

that relates the binary response Y to the observed treatment duration U on

all subjects while β∗ only includes those observations from the uncensored

subjects. Here, we only use data up to time τu = 27 for all estimators. The

results show that β̃ performs poorly on all accounts while the uncensored

estimator β∗ performs poorly some of the time.
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5. Example

We now apply our methods to data from the ESPRIT infusion trial from Duke

University Medical Center. The main objective of ESPRIT was to compare

eptifibatide, i.e. Integrilin, therapy to placebo on the basis of the composite

binary endpoint Y of death, myocardial infarction or urgent target vessel

revascularisation within 30 days treatment initiation. The random variable

U denotes the observed infusion length and ∆ is an indicator taking the value

one when the attending physician stopped the infusion process and equal to

zero when the infusion was stopped by an infusion-terminating event, such

as abrupt closure, no reflow, or coronary thrombosis. We also included the

following potential confounders in our analysis: diabetes (0/1), percutaneous

transluminal coronary angioplasty (PTCA,0/1), angina (0/1), heparin (0/1)

and weight, in kilograms, which is consistent with earlier findings.

[Table 3 about here]

We also include the two naive estimators presented in § 4, β̃ and β∗,

obtained from logistic regression using all the data and using only the un-

censored data, respectively. We only present the results for a linear model

in Table 3. As we can see, the linear term is not significant which leads us

to believe that patients will have about the same probability of the endpoint

regardless of the length of infusion. These results confirm earlier suggestions

that longer infusion lengths do not improve prognosis.

[Figure 1 about here]

Figure 1 shows that there appears to be some increase in the expected

probability of endpoint as infusion length increases, this relationship is nei-
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ther strong nor significant. We overfitted our data with higher-order polyno-

mial models simply to show that our method can identify nonlinear relation-

ships when they exist and can potentially match our earlier results closely.

The crosses in Figure 1 denote the policy estimates found in § 4 of Johnson

& Tsiatis (2004) at infusion lengths equal to 16, 18, 20, 22, and 24 hours.
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Appendix

Technical details

Deriving the Radon-Nikodym derivative. In our problem, when treatment is

discontinued for any patient, it is never reinitiated. Consequently, treatment

assignment can be characterised by the counting process A(t) = I(U ≤

t,∆ = 1), where we let A(t) = 0 if a subject is still treated at time t or

a treatment-terminating event has occurred, and A(t) = 1 if treatment has

been discontinued by time t. This was also referred to as N(t) is § 3.3. The

infinitesimal dA(t) = 1 denotes whether the treatment was discontinued in
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the interval [t, t+ dt) and zero otherwise.

If we define a filtration for a single observation as the increasing sigma

algebra

F(t) = σ{A(x), I(U ≤ x,∆ = 0), x ≤ t, ZH(t)},

then the intensity process of the counting process for the observational data

λ̃(t), defined heuristically as λ̃(t)dt = pr{dA(t) = 1|F(t−)}, is equal to

λ{t, ZH(t)}I(U ≥ t), where λ{t, ZH(t)} is defined by (4).

The hypothetical randomised study introduced in § 3 is an example of

what Murphy et al. (2001) refer to as a random dynamic treatment regime;

that is, where the treatment assignment at time t can be made at ran-

dom with probability that depends on previous treatment assignments and

other variables S(t). In our hypothetical randomised experiment, a pa-

tient’s treatment has to be terminated with certainty if they experience a

treatment-terminating event. Therefore, at time t, a patient will receive

treatment only if he/she has received continuous treatment up until time t

without a treatment-terminating event. The intensity process is given by

λ̃R(t) = λR(t)I(U ≥ t), where λR(t) = h(t)/H(t) is the hazard function for

the random variable T , the assigned treatment duration policy, in the hypo-

thetical randomised study. As a result of randomisation, the intensity is not

affected by the introduction of the covariate history ZH(t) in the filtration

for the hypothetical randomised study.

Under assumption (5) of no unmeasured confounders, also referred to as

the sequential randomisation assumption, and assumption (11), Murphy et

al. (2001) showed that the Radon-Nikodym derivative of the distribution of

(Y, U,∆) for the hypothetical randomised study, i.e. the random dynamic
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treatment regime, with respect to the distribution of (Y, U,∆) for the obser-

vational study is given by

E





∏

0≤t≤τu

{

λ̃R(t)

λ̃(t)

}dA(t)
exp{−Λ̃R(τu)}

exp{−Λ̃(τu)}

∣

∣

∣

∣

Y = y, U = u,∆ = δ



 , (A1)

where Λ̃(τu) =
∫ τu

0
λ̃(x)dx.

We note that (A1) is the conditional expectation, with respect to (Y, U,∆),

of the contribution of a single observation to the partial likelihood ratio for

the distribution of the counting process A(t) for the randomised study with

respect to the distribution of A(t) for the observational study as defined in

§ II of Andersen et al. (1993). Strictly speaking, Murphy et al. (2001)

assumed that treatment decisions can be made only at discrete times and

the partial likelihood ratio derived in their paper is that for a discrete time

process. This is generalised to the continuous time process using the prod-

uct limit representation as given by Jacod’s formulas (Andersen et al., 1993,

Corollary II.7.3).

Since




∏

0≤t≤τu

{

λ̃R(t)

λ̃(t)

}dA(t)


 = ∆

[

h(U)/H(U)

λ{U,ZH(U)}

]

,

exp{−Λ̃R(τu)} = H(U) and exp{−Λ̃(τu)} = K{U,ZH(U)}, we obtain that

the expression for the partial likelihood ratio in (A1) is equal to

∆λR(U)H(U) + (1 − ∆)H(U)

∆λ{U,ZH(U)}K{U,ZH(U)} + (1 − ∆)K{U,ZH(U)}

= ∆
h(U)

f{U,ZH(U)}
+ (1 − ∆)

H(U)

K{U,ZH(U)}
, (A2)

and the conditional expectation of (A2) given (Y = y, U = u,∆ = δ) is the

Radon-Nikodym derivative given in equation (12).
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Asymptotic properties of β̂n. For simplicity, we outline the asymptotic vari-

ance calculations of our estimator when ZH(U) = Z; that is, the covariate

history includes time-independent confounders only. The calculations of the

asymptotic variance for the more general case are similar but notationally

more cumbersome. The details for both cases are given in B. A. Johnson’s

unpublished 2003 Ph. D. Thesis from the North Carolina State University.

Recall that our estimator satisfies the system of p estimating equations

n
∑

i=1

ψ(Yi, Di, β̂n, γ̂n) = 0,

with ψ(Yi, Di, β, γ) defined in (17). Under the assumption that ZH(U) = Z,

we have

g(Ui, Zi, γ0) = exp{γTZi − Λ0(Ui) exp(γTZi)}

K(Ui, Zi, γ0) = exp{Λ0(Ui) exp(γTZi)}.

Since we assumed that (∂/∂β)ψ∗(Y,D, β) is bounded by a integrable ran-

dom variable in neighbourhoods of β0, it is straightforward to show that our

estimator minus the estimand may be written as

(β̂n − β0) = n−1
n
∑

i=1

A−1(β0)ψ(Yi, Di, β0, γ̂n) +Op(1), (A3)

where

An(β) = −n−1

n
∑

i=1

∂

∂β
ψ(Yi, Di, β, γ̂n)

A(β) = lim
n→∞

An(β).

Note that ψ(Yi, Di, β0, γ̂n) in (A3) has three estimated quantities, namely γ̂n,

Λ̂0(Ui) and Υ̂i(β, γ̂n), defined in (18). We proceed by adding and subtracting
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ψ(·) with each of these estimated quantities replaced by its true value. We

define the following shorthand for the calculations below: Λ̂0 = Λ̂0(Ui, γ̂n)

and Υ̂i = Υ̂i(β0, γ̂n). We also use the abbreviated estimating function when

ψ(Yi, Di, β0) is a function of the true values γ0, Λ0(Ui) and Υi(β0). Now, it is

important to express the following three differences as sums of independent

and identically distributed random variables plus remainder terms, rn, where

n1/2rn = op(1):
n
∑

i=1

{

ψ(Yi, Di, β0, γ̂n, Λ̂0, Υ̂i) − ψ(Yi, Di, β0, γ0, Λ̂0, Υ̂i)

}

(A4)

n
∑

i=1

{

ψ(Yi, Di, β0, γ0, Λ̂0, Υ̂i) − ψ(Yi, Di, β0, γ0,Λ0, Υ̂i)

}

(A5)

n
∑

i=1

{

ψ(Yi, Di, β0, γ0,Λ0, Υ̂i} − ψ{Yi, Di, β0, γ0,Λ0,Υi)

}

(A6)

In (A4), we are only considering the γ̂n in the definition of g{t, ZH(t), γ̂n}

and K{t, ZH(t), γ̂n} that does not come about through the definition of

Λ̂0(·, γ̂n) or Υi(β, γ̂n). Therefore, by a first-order Taylor-series expansion

and (19), (A4) may be rewritten as

n−1

n
∑

i=1

∫ ∞

0

[

Q(θ0)Σ
−1
γ {Zi − µ(u, γ0)}

]

dMi(u) + rn,

where θ = (βT, γT)T and

bi(θ0) = ψ(Yi, Di, β0, γ0)

[{

Λ0(Ui) exp(γT
0 Zi) − ∆i

}

ZT
i

]

b̄(θ0) = n−1
n
∑

i=1

bi(θ0)

Q(θ0) = E{b(θ0)}.

Similarly, a Taylor-series expansion of Λ̂0(Ui, γ̂n) around Λ0(Ui) in (A5) yields

n−1
n
∑

i=1

ψ(Yi, Di, β0) exp(γT
0 Zi){Λ̂0(Ui, γ̂n) − Λ0(Ui)} + rn. (A7)
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Using standard counting process methodology (Fleming & Harrington, 1991),

the Weak Law of Large Numbers and Lenglart’s Inequality (Lenglart, 1977),

we show that (A7) equals

n−1
n
∑

i=1

∫ ∞

0

[

P (θ0)Σ
−1
γ {Zi − µ(u, γ0)} +

E{a(u, θ0)}

s(0)(u, γ0)

]

dMj(u) + rn,

where

a(u, θ0) = ψ(Y,D, θ0) exp(γT
0 Z)I(U > u, U ∈ T )

P (θ0) =

∫ L

0

E{a(u, θ0)}µ(u, γ0)dΛ0(u).

Finally, (A6) may be rewritten as

n
∑

i=1

(1 − ∆i)

K(Ui, Zi)
{Υi(β0, γ̂n) − Υi(β0)} =

n
∑

i=1

(1 − ∆i)

K(Ui, Zi)

∫

T ∩{Ui<u}

ψ∗(Yi, u, β0){dΛ̂0(u, γ̂n) − dΛ0(u)}. (A8)

Similarly, (A8) may be written as

n−1
n
∑

i=1

∫ ∞

0

[

E{d(u, θ0)}

s(0)(u, γ0)
−G(θ0)V

−1{Zi − µ(u, γ0)}

]

dMi(u) + rn,

where

d(u, θ0) =
(1 − ∆)ψ∗(Y, t, β0)I(U < u)

K{U,Z,Λ0(U), γ0}

G(θ0) =

∫

T

E{d(u, θ0)}µ(u, γ0)dΛ0(u).

Then

n1/2(β̂n − β0) = n−1/2

n
∑

i=1

h(Yi, Di, θ0) + op(1),
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where the ith influence function is

h(Yi, Di, θ0) =

A−1(β0)

(

∫ ∞

0

[

J(θ0)Σ
−1
γ {Zi − µ(u, γ0)}

+
E{a(u, θ0) + d(u, θ0)}

s(0)(u, γ0)

]

dMi(u) + ψ(Yi, Di, β0, γ0)

)

,

where

J(θ0) = P (θ0) +Q(θ0) +G(θ0).

A consistent estimator of the asymptotic variance is given by

n−1

n
∑

i=1

ĥ(Yi, Di, θ̂n)ĥT(Yi, Di, θ̂n),

where all expectations are evaluated by their respective sample averages,

which matches precisely the estimator given in § 3 with ZH(U) replaced by

Z.
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Table 1. Numerical study for Bernoulli response using 1000 Monte Carlo

datasets. β̂ is our estimator, SSE is the Monte Carlo standard error, and

SEE is the average standard error across Monte Carlo datasets. The true

parameters are β0 = 0 and β1 = −1. Sample size is 250.

α1 β̂ SSE SEE

0 0.00 0.26 0.26

β0 0.25 -0.01 0.26 0.26

0.5 0.01 0.27 0.27

0 -1.04 0.20 0.19

β1 0.25 -1.03 0.19 0.18

0.5 -1.04 0.20 0.19
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Table 2. Numerical study for Bernoulli response using 1000 Monte Carlo

datasets. β̂ is our estimator, β̃ is maximum likelihood estimator from logistic

regression using all the subjects, while β∗ is the maximum likelihood estimator

using just those uncensored subjects. Empirical coverage probabilities are

given in parentheses. The true parameters are β0 = 0 and β1 = −1. Sample

size is 250.

α1 β̂ β̃ β∗

0 0.00 (0.95) -2.26 (0.00) -1.60 (0.15)

β0 0.25 -0.01 (0.96) -2.26 (0.00) -1.47 (0.21)

0.5 0.01 (0.96) -2.35 (0.00) -1.48 (0.26)

0 -1.04 (0.94) -0.85 (0.73) -1.01 (0.93)

β1 0.25 -1.03 (0.94) -0.87 (0.76) -0.95 (0.90)

0.5 -1.04 (0.95) -0.94 (0.89) -0.97 (0.91)

26



Table 3. Duration-response summary for ESPRIT trial data. Time is

recorded in hours; τu = 24 and tµ = 20. Estimates are shown with esti-

mated standard errors given in parentheses.

β̂ β̃ β∗

β0 -2.54 (0.13) -2.86 (0.16) -2.78 (0.16)

β1 0.12 (0.07) -0.09 (0.02) 0.16 (0.07)
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Fig. 1. Summary of ESPRIT infusion trial data. Fitted curves are shown for

a linear fit, solid line, and a quadratic fit, dashed line. Infusion policy point

estimates are displayed, as crosses, for a discretisation analysis at time equal

to 16, 18, 20, 22 and 24 hours.
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