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Variable selection in semiparametric linear regression with censored data

Brent A. Johnson1

Abstract

We describe two procedures for selecting variables in the semiparametric linear regression model for

censored data. One procedure penalizes a vector of estimating equations and simultaneously estimates

regression coefficients and selects submodels. A second procedure controls systematically the proportion

of unimportant variables through forward selection and the addition of pseudo random variables. We

explore both rank-based statistics and Buckley-James statistics in the proposed setting and evaluate the

performance of all methods through extensive simulation studies and one real data set.

Key Words: False selection rate; Hard thresholding; Non-smooth estimating function; Rank regression;

Soft thresholding; Survival analysis.

1 Introduction

Variable selection is an important problem in linear regression, with applications in many disciplines such

as econometrics, biostatistics, bioinformatics, and data mining. Variable selection is a challenging topic

in its own right but becomes more complicated when the outcomes may be censored. Outcome censoring

occurs, for example, when the response of interest is a failure time yet the failure times for some subjects

are unobserved because the follow-up period is complete. Then, the failure times for these subjects are

subject to right-censoring and what is known is that their failure times would occur at some time beyond

the duration of follow-up. There have been many recent advances in the area of variable selection for

censored and uncensored data, which we attempt to summarize below although the summary is in no way

comprehensive. Because this paper is concerned with selecting variables in a linear regression model, our

introduction and summary will be presented within this context.

In the linear regression model, we assume the i-th response Yi, i = 1, . . . , n is related to a d-dimensional

vector of standardized, prognostic variables Xi

Yi = βTXi + ǫi, i = 1, . . . , n, (1)
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where ǫi are independent and identically distributed according to an unspecified distribution function F (·).
The goal of variable selection for uncensored data is usually characterized through prediction accuracy,

that is, minimizing the prediction error, where prediction error (PE) for a new observation (Yh,Xh) is

defined as

PE(µ̂) = E{Yh − µ̂(Xh)}2,

where µ̂ = µ̂(Xh) is the predicted equation with estimated regression coefficients β̂ replacing the unknown

regression parameters β and the expectation is taken with respect to the joint distribution of (Yh,Xh).

Assuming the errors ǫi have mean zero and variance σ2, the prediction error PE(µ̂) may be decomposed as

PE(µ̂) = σ2 + (β̂ − β0)
T E(X1X

T
1 )(β̂ − β0) = σ2 + ME(µ̂),

where ME denotes the model error. In minimizing PE(µ̂), we have no control over σ2; hence, variable

selection focuses on minimizing ME(µ̂). The primary goal of variable selection procedures is to minimize

ME(µ̂) using the so-called “important” subset of the total d variables. Generally speaking, methods of

variable selection may be split into two classes, those methods which shrink regression coefficients and

those that do not. We briefly summarize these two broad strategies below.

Variable selection procedures which do not shrink coefficients include forward selection, backward and

stepwise deletion, and all subsets regression methods. These methods generate a sequence of models using

hypothesis testing and use goodness-of-fit statistics (GOF) for selecting the best submodel. Generally,

one either (a) fixes α-to-enter and selects the model where the following model has a p-value greater than

α, or (b) chooses the submodel, among the sequence of submodels, which minimizes the GOF statistic,

e.g. Mallow’s Cp (Mallows, 1973, 1975), the Akaike information criterion (AIC; Akaike, 1973, 1977),

or the Bayesian information criterion (BIC; Schwarz, 1978). The deviance information criterion (DIC;

Spiegelhalter et al., 2002) is a Bayesian alternative to AIC and BIC for posterior model selection and

analogous to AIC/BIC in the sense that DIC is a composite measure of model adequacy plus a penalty for

model complexity.

A criticism of the above procedures is that the stochastic nature of the model selection process is difficult to

summarize and often ignored when reporting the accuracy of the regression coefficient estimates in the final

model. An alternative to such procedures are methods which simultaneously shrink regression coefficients

and set some coefficients to zero, thereby, removing them from the final model. For linear models, one

3



such shrinkage estimator is penalized least squares estimators, i.e. the minimizer of QLS(β), where

QLS(β) = n−1‖Y − Xβ‖2 +

d∑

j=1

pλ(|βj |), (2)

where pλ(|βj |) is a penalty on the absolute value of the j-th regression coefficient through a smoothing

parameter λ, and Y = (Y1, . . . , Yn)T , X = (XT
1 , . . . ,XT

n )T , and ‖·‖ denotes the Euclidean norm (Tibshirani,

1996; Fan and Li, 2001). In likelihood-based models, (2) is modified by replacing the least squares objective

function with minus the log-likelihood, i.e.

QLIK(β) = n−1
n∑

i=1

li(Yi,Xi,β) +

d∑

j=1

pλ(|βj |),

where li(Yi,Xi,β) is minus the log conditional density of Yi given X. The objective function QLIK(β)

lends itself naturally to censored data problems by writing li(·) as minus the log partial likelihood for

the i-th subject (e.g. Tibshirani, 1997; Fan and Li, 2002). In this manuscript, we consider the following

three penalty functions: (i) the LASSO penalty (Tibshirani, 1996, 1997), pλ(|β|) = λ|β|, (ii) the hard

thresholding penalty, pλ(|β|) = λ2 − (|β| − λ)2I(|β| < λ), and (iii) the SCAD penalty (Fan and Li, 2001,

2002) given by the continuous function

qλ(|β|) = λ

{
I(|β| < λ) +

(aλ − |β|)+
(a − 1)λ

I(|β| ≥ λ)

}
, for a > 2,

where we define

(∂/∂β)pλ(|β|) = qλ(|β|)sgn(β).

Here, our goal is to consider new methods for variable selection with censored data based on the semipara-

metric linear model for censored data rather than the methods based on QLIK(β), the partial likelihood,

and generally the proportional hazards assumption. The application of variable selection methods in model

(1) is new and has not yet been studied in detail in the literature. Specifically, we aim to select variables

in the linear model (1) when the observed data are {(Zi,∆i,Xi), i = 1, . . . , n}, where Zi = min(Yi, Ci),

∆i = I(Yi ≤ Ci) for a censoring random variable Ci, i = 1, . . . , n. We will assume throughout that Yi is

conditionally independent of Ci given the prognostic variables Xi. We also assume that all variables have

been standardized such that n−1
∑n

i=1 xij = 0 and n−1
∑n

i=1 x2
ij = 1 for all j, 1 ≤ j ≤ d.

In this paper, we consider two different strategies for selecting variables in the semiparametric linear

model for censored data. First, we extend the class of shrinkage estimators to the current setting, where

shrinkage estimator is defined through the three penalty functions, pλ(|β|), given above. Second, we
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consider a recently proposed method which controls the proportion of unimportant variables in the model

(Wu, Boos, and Stefanski, 2007). The latter method works by adding additional noise variables to the

original d predictors and monitoring the number of variables falsely selected in forward selection. Wu et al.

(2007) consider their method in the context of linear and logistic regression; below, we extend their method

to the semiparametric linear model for censored outcomes. The methods are described in Section 2 and

large sample properties discussed in Section 3. We evaluate the small sample performance of our methods

through Monte Carlo studies in Section 5 and illustrate the utility of the methods in Section 6.

2 Methods

Two proposals for statistical inference in the semiparametric linear model (1) with censored outcomes

include one based on generalized ranks (Prentice, 1978) and another based on extending the least squares

estimator (Buckley and James, 1979). With no variable selection, the asymptotic properties for the rank-

based and Buckley-James statistics have been described elsewhere (Ritov, 1990; Tsiatis, 1990; Wei, Ying,

and Lin, 1990; Lai and Ying, 1991a; Lai and Ying, 1991b; Ying, 1993; Huang, 2002; Strawderman, 2005)

as well as numerical strategies for drawing inference from a sample of data (Huang, 2002; Strawderman,

2005).

2.1 Penalized weighted log-rank statistics

Define the weighted log-rank estimating function as

UW (β) =

n∑

i=1

∆iW{ei(β),β}[Xi − X̃{ei(β),β}], (3)

where ei(β) = Zi − βTXi, W (·) satisfies condition A9 in Strawderman (2005),

X̃(t,β) = S(1)(t,β)/S(0)(t,β)

S(0)(t,β) = n−1
n∑

j=1

I{ej(β) ≥ t}, S(1)(t,β) = n−1
n∑

j=1

XjI{ej(β) ≥ t}.

Define the penalized weighted log-rank estimating function as

UP
W (β) = UW (β) + nbλ(β), (4)
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where bλ(β) = (qλ(|β1|)sgn(β1), . . . , qλ(|βd|)sgn(βd))
T , qλ(|β|) is a continuous function; and define the

estimator β̂W as a consistent solution to UP
W (β) = 0. Two weight functions of substantial interest are

W (t,β) = 1 and W (t,β) = S(0)(t,β), that correspond to the log-rank and Gehan weights, respectively.

It is well-known that for general weight functions, UW (β) is neither continuous nor componentwise mono-

tone in β. Hence, even without the variable selection arising from the penalty term in (4), it is difficult to

solve UW = 0 directly. In addition, assuming one can derive the asymptotic mean and covariance matrix

of a consistent estimator sequence under appropriate regularity conditions, standard error estimates for

β̂W may be difficult to calculate because the asymptotic covariance for β̂W will depend on the unknown

density of ǫi in a complicated way.

2.2 Penalized Buckley-James statistics

Assuming the prognostic variables have mean zero, the Buckley-James estimating function (Buckley and

James, 1979) is

Ũ(β) =

n∑

i=1

{ξi(β) − βTXi}Xi.

where

ξi(β) = ∆iYi + (1 − ∆i)

[
βTXi +

∫ ∞
ei(β){1 − F̂ (s,β)} ds

1 − F̂{ei(β),β}

]
, (5)

where F̂ (t,β) is the left-continuous version of the Kaplan-Meier estimator of F (t) based on {ei(β),∆i} for

i = 1, . . . , n. Note that Ũ(β) reduces to the normal equations when ∆i = 1 for all i = 1, . . . , n. Define the

penalized Buckley-James estimating function as

ŨP (β) = Ũ(β) + nbλ(β), (6)

and β̃ as a solution to ŨP (β) = 0. It is again well-known that the Buckley-James estimating function Ũ(β)

is discontinuous and may contain multiple roots. A general technique for solving Ũ(β) = 0 is to iterate

between imputing the censored outcomes and solving the “complete-data” normal equations. Extensions

of this and other ideas for solving ŨP (β) = 0 will be explored in Section 4.
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2.3 Controlling the false selection rate

Wu, Boos, and Stefanski (2007) proposed recently a new method of selecting variables by controlling the

false selection rate (FSR), defined to be the expected proportion of falsely selected unimportant variables

among the total variables selected in a variable selection procedure. For a data set Aobs = {(Zi,∆i,Xi), i =

1, . . . , n} and forward selection procedure, the fraction of falsely selected unimportant predictors is defined:

γ(Aobs) = DZ(Aobs)/{1 + DN (Aobs) + DZ(Aobs)}, or alternatively as the solution to the equation,

0 = DZ(Aobs) − {1 + DN (Aobs) + DZ(Aobs)}γ(Aobs), (7)

where DN (Aobs) and DZ(Aobs) are the number of important and unimportant variables, respectively, from

running forward selection on the observed data Aobs. The goal of the FSR method is to maintain γ(Aobs)

near some predetermined target level, say γ0, on average.

The target level γ0 can be derived through equation (7) by replacing γ(Aobs) with γ0 and taking expecta-

tions. Then, the definition of the target FSR level γ0 is,

γ0 =
E{DZ(Aobs)}

E{1 + DN (Aobs) + DZ(Aobs)}
.

In practice, however, a user-defined α-to-enter level controls the number of important and unimportant

variables in the forward selection. To reflect the dependence of the forward selection procedure on the

α-to-enter level, we define DN (Aobs;α) and DZ(Aobs;α) to be the number of important and unimportant

variables, respectively, after running forward selection on the observed data Aobs for a given, user-defined

α-to-enter. Now, define the FSR function

γ(α) =
E{DZ(Aobs;α)}

E{1 + DN (Aobs;α) + DZ(Aobs;α)} . (8)

Assuming the continuity of γ(α), the goal of FSR is determine the size α∗ such that γ(α∗) = γ0. Because

of the discrete nature of γ(α), a precise definition of α∗ is given by α∗ = sup{α|γ(α) ≤ γ0}. Note, that

both DN (Aobs;α) and DZ(Aobs;α) are unobserved quantities in any model selection procedure; only the

sum {DN (Aobs;α) + DZ(Aobs;α)} is known.

We approximate the FSR function γ(α) using a ratio of averages over M augmented data sets, A1, . . . ,AM .

Define the m-th augmented data set Am = {(Zi,∆i,Xi,X
∗
i,m), i = 1, . . . , n}, where Xi,m is a p-dimensional

vector of simulated, pseudopredictors (defined in Appendix 3) for the i-th subject. Using the augmented

data Am, we fit the linear regression model

Yi = βTXi + β∗TX∗
i,m + ǫi, i = 1, . . . , n, (9)
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where β∗ are the regression coefficients corresponding to the pseudopredictors and other notation follows

from (1). Define DN (Am;α), DZ(Am;α) and DP (Am;α) as the number of important, unimportant, and

pseudopredictors, respectively, after running forward selection at the user-defined α-to-enter level α using

the augmented data set Am. Next, we define the ratio of averages,

γ̂P (α) = D̄P,M(α)/{1 + D̄M (α)}, where (10)

D̄P,M (α) = M−1
M∑

m=1

DP (Am;α)

D̄M (α) = M−1
M∑

m=1

DN (Am;α) + DZ(Am;α) + DP (Am;α)

Because the pseudopredictors are known a priori to be unrelated to the outcome Y , γ̂P (α) may be used to

approximate the stochastic behaviour in the expected proportion of falsely selected variables as a function

of α. The final step in the FSR method is to link the two functions: γ̂P (α) and γ(α). This connection is

described in the paragraph below.

A relationship between γ̂P (α) and γ(α) is achieved by setting γ̂P (α) = ζ0 and γ(α) = γ0. Under assump-

tions (A1)-(A2) from Wu et al. (2007, p. 237), one can show that ζ0 = (pγ0)/(pγ0 + dZ), where p is the

number pseudopredictors and dZ = #{βj = 0, j = 1, . . . , d}. Hence, γ̂P (α) = (pγ0)/(pγ0 + dZ). Using the

definition of γ̂P (α) in (10) and solving for γ0 leads one to γ0 = [{dZD̄P,M(α)}/p]/[1+D̄M (α)]. We note that

under assumptions (A1)-(A2) in Wu et al. (2007), the expression in the numerator (i.e. [{dZD̄P,M (α)}/p])

is estimating E{DZ(Aobs;α)} and the denominator is estimating E{1 + DN (Aobs;α) + DZ(Aobs;α)}, as

desired. Using the approximation d̂Z(α) ≈ {p + d − DN (Aobs;α) + DZ(Aobs;α)} allows one to construct

an iterative algorithm for FSR model selection, which we describe in Subsection 4.4.

3 Asymptotic Results

Let β0 be the true value of β and suppose that β0j 6= 0 for j ≤ dN and β0j = 0 for j > dN . We impose

the following conditions on the penalty function qλn(|β|).

Q1. (i) limn→∞ λn = 0 and limn→∞
√

nλn = ∞.

(ii) For non-zero fixed β, lim
√

nqλn(|β|) = 0 and lim q′λn
(|β|) = 0;

(iii) For any M > 0, limn→∞ sup|β|≤Mn−1/2 q′λn
(|β|) = 0 and limλ−1

n inf |β|≤Mn−1/2 qλn(|β|) > 0;
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Remark 1. Condition Q1 pertains to the choices of the penalty function and the regularization parameter.

Intuitively, condition Q1(ii) implies the penalty imposed on regression coefficients decreases as the sample

size increases; so the penalized coefficient estimates will be equal to the usual (unpenalized) estimates, say

β̂
(0)

, for sample size sufficiently large. The L1 penalty does not satisfy condition Q1 because it penalizes

large and small coefficient estimates β̂
(0)

regardless of the sample size [namely, one assumes the existence

of λ0 such that n−1/2λn → λ0 as n → ∞ (e.g. Knight and Fu, 2000, Theorem 2)]. However, for sample

size sufficiently large, the penalty on the penalized estimating function will be zero, and thus the SCAD

and Hard threshold estimates will equal the usual (unpenalized) estimates β̂
(0)

.

The following theorem states the main theoretical result regarding the solution to the penalized weighted

log-rank estimating equation, including the existence of a
√

n-consistent solution, the sparsity of the solution

and the asymptotic normality of the estimator.

Theorem 1 Under conditions Q1 above and conditions A1-A8 in Appendix 1, the following results hold:

(i) There exists an
√

n-consistent solution to UP
W (β), i.e, β̂W = β0+Op(n

−1/2) such that n−1/2UP
W (β̂W ) =

op(1).

(ii) limn pr(β̂Wj = 0 for j > dN ) = 1.

(iii) Let β̂W1 = (β̂W1, . . . , β̂WdN
)T and β01 = (β01, . . . , β0dN

)T . Then

√
n(AW11 + Σ11)

{
β̂W1 − β01 + (AW11 + Σ11)

−1bλn(β0)
}
→d N(0,BW11),

where AW11 and BW11 are the first dN × dN sub-matrices of

AW = lim
n→∞

n−1
n∑

i=1

∫ τ

−∞
W (t,β0){Xi − X̃(t,β0)}⊗2{λ′(t)/λ(t)} dNi(t,β0),

BW = lim
n→∞

n−1
n∑

i=1

∫ τ

−∞
{W (t,β0)}2{Xi − X̃(t,β0)}⊗2 dNi(t,β0),

Ni(t,β) = I{ei(β) ≤ t,∆i = 1}, λ(t) is the hazard function of the errors ei(β0), λ′(t) = (d/dt)λ(t), Σ11

is the first dN × dN sub-matrix of diag
{
q′λn

(|β0|)sgn(β0)
}
, A⊗2 = A ⊗ A, the Kronecker product of the

matrix A with itself, and τ is defined in Condition A6 of Appendix 1.

Remark 2. Conditions A1-A8 are conditions similar to ones given in Strawderman (2005) for deriving an

asymptotic linear expression for n−1/2UW (β) and subsequently deriving a
√

n-consistent, asymptotically

normal estimator β̂W . The proof for Theorem 1 is given in Appendix 2.
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Based on the work of Ritov (1990), it is natural to believe that a similar conclusion stated in Theorem 1 also

holds for penalized Buckley-James statistics. In particular, conditions A1-A6 in Appendix 1 have similar

implications as the regularity conditions given in Ritov (1990) to derive an asymptotic linear expression

for n−1/2Ũ(β), where the asymptotic slope matrix Ω is given by

Ω =

∫
V ar(X|C − βT

0 X ≥ u) {u − E[ǫ|ǫ > u]}
{
−f ′(u)

f(u)
+ E[

f ′(ǫ)

f(ǫ)
|ǫ > u]

}
pr(C − βT

0 X ≥ u) dF (u),

assuming Ω nonsingular. We conjecture that an approximate
√

n-consistent solution to ŨP (β) = 0 exists

under appropriate regularity conditions, including condition Q1. Assuming the conjecture is correct, the

conclusions of Theorem 1 continue to hold where

√
n(Ω11 + Σ11)

{
β̃1 − β10 + (Ω11 + Σ11)

−1bλn(β0)
}
→d N(0,Λ11).

where

Λ =

∫
V ar(X|C − βT

0 X ≥ u) {u − E[ǫ|ǫ > u]}2 pr(C − βT
0 X ≥ u) dF (u),

and f ′(t) = (d/dt)f(t), f(t) = (d/dt)F (t).

It is evident that the asymptotic covariance of β̂W1 is

n−1(AW11 + Σ11)
−1BW11(AW11 + Σ11)

−1.

Unlike the asymptotic variance formulae given in Fan and Li (2001, 2002), the expressions for the proposed

estimators in the accelerated failure time model cannot be evaluated directly because they depend on

unknown density functions. Nevertheless, several recent numerical techniques are now available which

allow one to obtain standard error estimates without numerical derivatives or smoothing, which may be

unstable. Two recent methods include inverse numerical differentiation (Huang, 2002), and resampling for

AW (Strawderman, 2005, Algorithm 2). In the sequel, we use Strawderman’s method. Also, the above

methods work as well for penalized Buckley-James statistics with Ω11 and Λ11 replacing AW11 and BW11,

respectively.

4 Estimation and Inference

Here, we provide details on estimation algorithms to obtain coefficient estimates from a sample of data for

a fixed smoothing parameter λ. We discuss the penalized statistics in an order (beginning with penalized
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Buckley-James statistics) which facilitates the flow of the manuscript. Finally, we discuss novel methods

for cross-validating the smoothing parameter λ in the semiparametric linear regression model for censored

outcomes.

4.1 Estimation for penalized Buckley-James statistics

First, we note that in neighborhoods of the truth β0j , |β0j | > 0, the derivative of the penalty function is

well-approximated by
∂

∂βj
pλ(|βj |) = qλ(|βj |)sgn(βj) ≈ {qλ(|β0j |)/|β0j |}βj .

This is the local quadratic approximation discussed in Tibshirani (1996) and Fan and Li (2001). This

approximation allows one to replace a potentially unstable optimization routine involving a singularity at

zero with a stable optimization routine. In particular, under regularity conditions, the asymptotic linear

expansion of the penalized Buckley-James estimating equation is

n−1/2ŨP (β) ≈ n−1/2Ũ(β0) + n1/2Ω(β − β0) + n1/2Σλ(β0)β,

ignoring an op(1) term and Σλ(β) = diag {qλ(|β1|)/|β1|, . . . , qλ(|βd|)/|βd|}. The expression follows directly

from the quadratic approximation of the penalty functions on the regression coefficients. Hence, after

rearranging terms, we obtain the following iterative algorithm, which we term the Direct Algorithm.

Direct Algorithm.

1. β(0) solves Ũ(β) = 0

2. β(k+1) = β(k) −
{

nΩ̂
(k)

+ nΣλ(β(k))
}−1

ŨP (β(k))

where Ω̂
(k)

is a consistent estimate of Ω based on the current iterate β(k) using Strawderman’s Algorithm 2

(2005) and β(0) is a consistent solution to Ũ(β).
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4.2 Estimation for penalized weighted log-rank statistics

In the case where W (t,β) = S(0)(t,β), the estimating function UP
W (β) in (4) simplifies to

UP
G(β) =

n∑

i=1

∆iS
(0){ei(β),β}[Xi − X̃{ei(β),β}] + nbλ(β)

= n−1
n∑

i=1

n∑

j=1

∆i(Xi − Xj)I{ei(β) ≤ ej(β)} + nbλ(β) (11)

where the (11) follows from the definition of X̃{β; ei(β)} and straightforward algebraic manipulations. It

is easy to see that UP
G(β) = 0 in (11) is the gradient of the following function:

LP
G(β) = LG(β) + n

d∑

j=1

pλ(|βj |)

LG(β) = n−1
n∑

i=1

n∑

j=1

∆i{ei(β) − ej(β)}−, (12)

where c− = max(−c, 0). It is well-known that minimizing LG(β) is asymptotically equivalent to minimizing

‖UG(β)‖ (Fygensen and Ritov, 1994) and so LP
G(β) may also be expressed as a function of ‖UG(β)‖.

Because LG(β) is convex in β, a sufficient condition to ensure that LP
G(β) is convex is to require that the

penalty function pλ(|βj |) is convex. One such penalty function is pλ(|βj |) = λ|βj |, i.e. the LASSO penalty,

in which case the optimization may be rewritten in the following way: minimize
∑n

i=1

∑n
j=1 ∆iuij subject

to the constraints uij > 0, uij ≥ −{ei(β) − ej(β)}, and
∑d

k=1 |βk| ≤ k, where k is a tuning parameter.

This optimization may be accomplished through quadratic programming.

Now, of course, it would be desirable to work directly with LP
G(β) for arbitrary penalty functions, not just

convex penalties. However, the singularity in LG(β) makes this task challenging. An alternative algorithm

again uses the quadratic approximations defined above.

Algorithm 2. Gehan-type weight functions.

1. β(0) = arg min LG(β).

2. β(k+1) = arg min ‖Q(β;β(k))‖, where Q(β;β(k)) = UG(β) + nΣλ(β(k))β.

3. Repeat step 2 until convergence.
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Here, we explain the intuition behind Algorithm 2 . We begin with the premise that the Direct Algorithm

could be applied to the penalized Gehan estimating function UP
G(β) but a direct minimization of LP

G(β)

would be more desirable because it avoids the estimation of AG(β). Again, we note that β(0) in Step 1 is

equivalent asymptotically to {arg min ‖UG(β)‖}, where UG(β) is known to be componentwise monotone.

Once β(0) is obtained, Σλ(β(0)) is fixed and the product Σλ(β(0))β is again componentwise monotone.

We conjecture that, under appropriate regularity conditions, Q(β;β(k)) is componentwise monotone for

every intermediate value β(k) and, upon convergence, the solution β̂G is equivalent asymptotically to the

minimizer of LP
G(β). We also note that the calculations in Algorithm 2 are similar to the minimizations

required in Huang’s (2002) ‘inverse numerical differentiation’ algorithm where nΣλ(β(k))β correspond

to his perturbation vectors; however, his perturbation vectors do not depend on β as they do here in

Algorithm 2. For general weight functions, we assume that β̂G is a consistent root of UP
G(β) and use the

asymptotic linearity of UP
W (β) similar to what was done in the Direct Algorithm.

Algorithm 3. General weight function

1. Set β
(0)
W = β̂G.

2. Let Â
(k)
W be a consistent estimate of AW based on the current iterate β(k).

3. β
(k+1)
W = β

(k)
W − {nÂ

(k)
W + nΣλ(β

(k)
W )}−1UP

W (β
(k)
W ).

4. Repeat steps 2-3 until convergence.

Here we note that step 2 requires resampling (Strawderman, 2005, Algorithm 2) and a single pass through

Algorithm 3 is similar to Strawderman’s one-step estimator.

4.3 Selection of λ

To implement our proposed algorithm, we require a choice of λ for the LASSO and Hard thresholding

penalty functions, and of (a, λ) for the SCAD penalty. Fan and Li (2001, 2002) suggest using a = 2+
√

3 ≈
3.7 and showed that this selection performs well in small samples. We use their suggested estimate for a and

simplify the cross-validation for all estimators to one involving the scalar λ. In this subsection, we include

the subscript λ on β̂, i.e. β̂λ, respectively, to stress the dependence of the estimator on the regularization

parameter λ. Finally, β̂λ will refer to a weighted log-rank estimator unless specified otherwise.
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For uncensored data in the multiple linear regression model, Tibshirani (1996) suggested the following

generalized cross-validation statistic:

GCVLS(λ) =
RSS(λ)/n

{1 − e(λ)/n}2

where RSS(λ) is the residual sum of squares ‖Y − Xβ̂λ‖ and e(λ) is the effective number of parameters,

e(λ) = tr[X(XT X + nΣλ)−1XT ]. Then, the optimal λ is given by arg min GCVLS(λ) (Tibshirani, 1996;

Fan and Li, 2001). Note that for uncensored data, the intercept may be safely ignored in RSS(λ) as X

has mean zero and Y may be standardized by
∑n

i Yi/n. For general penalized estimating equations, in

particular ones with missing data, the effective number of parameters e(λ) may be approximated using a

technique by Tibshirani (1997). Upon convergence, we note that β̂λ may be approximated by the ridge

regression estimate β̂r = {nÂW (β̂λ)+nΣλ(β̂λ)}−1VT Y∗, where V is the Cholesky root of nÂW (β̂λ) and

the pseudo response Y∗ = (VT )−1{nÂW (β̂λ)β̂λ −UW (β̂λ)}. So, in the semiparametric linear model with

censored outcomes, the effective number of parameters in the ridge estimate (Hoerl and Kennard, 1970) is:

e(λ) = tr[{ÂW (β̂λ)+Σλ(β̂λ)}−1ÂW (β̂λ)]. In the penalized Buckley-James estimator, ÂW (β̂λ) is replaced

by Ω̂(β̂λ). While we can propose a substitute for e(λ) in GCVLS(λ) when some outcomes may be censored,

replacing RSS(λ) effectively remains challenging.

For the estimators proposed in this article, our cross-validation statistic is given by

GCV(λ) =
LG(β̂λ)/n

{1 − e(λ)/n}2
,

where the residual sum of squares loss function in GCVLS(λ) is replaced by LG(β). It is well-known

that for uncensored data, LG(β) yields a proper distance measure and so, geometrically speaking, it is

analogous to least squares (McKean, 2004). Because the convexity of LG(β) is preserved in the presence

of censoring, as defined in (12), the geometric interpretation of LG(β) extends naturally to censored

data. Finally, because of the well-known relation between Buckley-James statistics and weighted log-

rank statistics (Ritov, 1990), one may regard GCV(λ) as a general goodness-of-fit statistic for choosing

smoothing parameters in the semiparameteric linear model for censored outcomes. Therefore, in the

sequel, we define λ̂ = arg min GCV(λ). Our experience suggests that the GCV(λ) criterion performs well

in simulation studies. Additional comments regarding cross-validation are relegated to Section 7.
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4.4 FSR algorithm

The success of the FSR algorithm relies heavily on the estimated γ̂P (α). This function is calculated by

running forward selection on every augmented data set A1, . . . ,AM and for every α-to-enter level in a fine

grid of [0, 1]. Calculating γ̂P (α) is computationally expensive but it is only done once. Once the function

γ̂P (α) is calculated, the FSR algorithm ultimately seeks to find the α-to-enter level α̂0 which satisfies

α̂0 = sup{α|γ̂P (α) ≤ ζ0, α ∈ [0, 1]}, (13)

for the cutoff ζ0 which leads to the target false selection rate γ0. This is accomplished through the following

two-step iterative process: (a) ζ(k+1) = (γ0p)/{γ0p + D̂Z(Aobs; α̂
(k))}, where D̂Z(Aobs; α̂

(k)) is the number

of original d predictors left out of the final model; (b) update α̂(k+1) via (13) and ζ(k). The process is

initialized with ζ(0) = γ0p/(γ0p + d) and finished with a final forward selection run with α-to-enter level

α̂0.

Remark 3. We use generalized Wald tests (cf. Rotnizky and Jewell, 1990; Boos, 1992) to implement

forward selection for Buckley-James and weighted log-rank statistics. Finally, when we calculate γ̂P (α)

over a fine grid of [0, 1], we use the partition αk = k/500, k = 1, . . . , 500 in simulation studies and

αk = k/1000, k = 1, . . . , 1000 in data analyses.

5 Simulation Studies

In this section, we evaluate the proposed methods through simulation studies. The simulation design below

is adapted from ones considered earlier in the literature (Tibshirani and Knight, 1999; Wu et al., 2007).

Here, we simulate M = 100 datasets from the model

Yi = βT
0 Xi + ǫi, i = 1, . . . , n,

where Xi is multivariate normal with the correlation between any Xk and Xj equal to ρ|k−j|, ρ = 0.5

and the sample size n = 100. Here, the errors ǫi independently follow a standard normal distribution and

the censoring distribution is independent of Yi and taken to be uniform(0, τ) with τ chosen to yield 40%

censoring. The true regression coefficients are chosen to yield a theoretical R2 = 0.75, where for a random

vector X1, define

R2 =
βT

0 E(X1X
T
1 )β0

βT
0 E(X1X

T
1 )β0 + σ2

.
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We consider four different simulated models H1-H4 with different numbers of non-zero, true regression

coefficients. The true regression coefficients are clustered in two groups, centered at X4 and X13, and

generated in the following manner.

1. For h = 1, 2, 3, 4, set the initial coefficient values

β4+k,h = β13+k,h = (h − k)2, for |k| < h,

2. multiply initial coefficient values by common constant to yield R2 = 0.75.

Model H1 has 16 noise variables and two very strong predictors of outcome while Model H4 has four noise

variables and 14 weak to moderate predictors of outcome.

We evaluate the variable selection procedures through four statistics: relative median model errors, number

of correct and incorrect zeros, and the estimated false selection rate. Relative median model error (RMME)

is the ratio of the median model errors from the variable selection procedure over the model error from

the unpenalized statistic using all d variables. Our definition of relative median model error is similar

to Tibshirani (1996, 1997) but differs from Fan and Li (2001, 2002) in that the latter use median of the

ratios of model errors whereas we use the ratio of median model errors. In addition, the average number

of variables which are correctly shrunk to zero is termed a “correct” zero and non-zero variables which

are incorrectly shrunk to zero termed an “incorrect” zero. We call the model which knows a priori which

variables are non-zero but with unknown regression coefficients β, the “true” model. Finally, we also

monitor the proportion of unimportant variables included in the final model, that is, the false selection

rate.

In Figure 1, we summarize the results from 100 Monte Carlo data sets using weighted log-rank statistics

and ρ = 0.5 in the random design matrix X. We use a solid black line to represent the ideal curve

resulting from the true model. We find that among the methods considered, FSR and SCAD perform

better than LASSO when the model fraction (i.e. proportion of significant variables among total variables)

is low while LASSO performs best in models with many weak to moderate variables. The tradeoff among

methods is illustrated in Figures 1(b)-(d): FSR and SCAD tend to be too exclusive thereby eliminating

some important variables whereas LASSO is less discriminate and pays dividends when the model fraction

is high. We repeated the above simulation exercise with uncorrelated predictors but noted only modest

differences.
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Figure 1: Simulation summary of 100 Monte Carlo data sets using weighted log-rank statistics with Gehan

weight and corr(xj , xk) = (1/2)|j−k| for two predictors xj and xk. Different variable selection procedures

are indicated by a different symbol: FSR (F), SCAD (S), Hard (H), and LASSO (L).
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Variable Buckley-James Gehan log-rank

1. Age −0.22(0.07) −0.22(0.07) −0.21(0.07)

2. Albumin 0.16(0.08) 0.19(0.10) 0.19(0.08)

3. Alk. Phos. −0.01(0.05) −0.01(0.08) −0.04(0.07)

4. Ascites −0.12(0.07) −0.13(0.06) −0.07(0.08)

5. Bilirubin −0.49(0.07) −0.50(0.13) −0.52(0.08)

6. Edema −0.15(0.08) −0.15(0.07) −0.18(0.09)

7. Hepatomegaly −0.06(0.06) −0.06(0.08) −0.10(0.09)

8. Prothrombin −0.21(0.07) −0.23(0.09) −0.16(0.09)

9. Sex 0.07(0.05) 0.08(0.05) 0.05(0.07)

10. Spiders −0.11(0.07) −0.13(0.09) −0.02(0.10)

Table 1: Full model results for Mayo primary biliary cirrhosis data using the accelerated failure time model

and Buckley-James and weighted log-rank statistics

6 Example

Here, we consider the Mayo primary biliary cirrhosis data (Fleming and Harrington, 1991, Appendix D.1).

The data contains information about the survival time and prognostic variables for 418 patients who met

standard eligibility criteria for a study of the drug D-penicillamine. We consider the following ten variables

in our analysis: age, albumin, alkaline phosphatase, ascites, bilirubin, edema, hepatomegaly, prothrombin

time, sex and vascular spiders. Albumin, alkaline phosphatase, bilirubin, and prothrombin time have all

been transformed on the natural logarithmic scale (see Fleming and Harrington, 1991, Ch. 4). Of 418

eligible patients, 312 patients were included in a randomized study and used to build a Cox proportional

hazards model for the natural history of PBC (Dickson et al., 1989) which includes the five variables: age,

albumin, bilirubin, edema, and prothrombin time. We use 312 randomized patients in our analyses below,

that is, the same data used to select the five important variables in the natural history model under the

proportional hazards assumption (e.g. Fleming and Harrington, 1991, Ch. 4, p. 156). Our statistical

analysis of the Mayo PBC begins in Table 1 where we provide parameter estimates from fitting the full

accelerated failure time model with ten variables and give numeric labels for independent variables used

in subsequent figures.
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Figure 2: The proportion of pseudo variables as a function of α-to-enter for the Mayo PBC data. The

final cutoffs ζ0 leads to α̂0 = 0.032, 0.038 and 0.096 for Buckley-James, Gehan, and log-rank statistics,

respectively.

In Table 1, we see that age, albumin, bilirubin, edema, and prothrombin time are strong predictors of

mortality for untreated PBC amidst other important variables, which is consistent with the findings of

Dickson et al. (1989). In addition, ascites, sex, and vascular spiders appear to be weakly important

variables for Buckley-James and Gehan statistics, but not as important for log-rank statistics.

A summary of the FSR procedure is given in Table 2 and displays of the proportion of pseudopredictors

γ̂P (α) given in Figure 2. Table 2 gives the sequence of variables entering the model, the generalized

Wald test statistics, and approximate p-values. Our implementation of FSR with γ0 = 0.05 leads to the

same five-variable model (including age, albumin, bilirubin, edema, and prothrombin time) for all three

statistics. The order of variables entering the final model agree generally: bilirubin and edema enter first

or second, age enters third, albumin and prothrombin time enter fourth or fifth. Three variables appear

to be weakly associated with mortality (ascites, sex, spiders) in Buckley-James and Gehan statistics but

do not enter in the final model at the γ = 0.05 level. The estimated α-to-enter for Buckley-James, Gehan,

and log-rank statistics were α̂0 = 0.032, 0.038 and 0.096, respectively. We found it surprising that α̂0 for

the log-rank statistic was more than twice as large than that of Buckley-James and Gehan when γ0 = 0.05.

This difference may be related, in part, to the larger gap in significance level between the fifth and sixth
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Table 2: Forward selection for Mayo primary biliary cirrhosis data via generalized Wald tests with an

underline indicating the FSR stopping rule for 5% falsely selected variables, i.e. γ0 = 0.05. Variable index

number (Index) is given in the sequence of variables entered via forward selection with indices found in

Table 1. The test statistic T and p-value are also given for each step in the sequence.

Buckley-James Gehan log-rank

Index T P (T > χ2
1) Index T P (T > χ2

1) Index T P (T > χ2
1)

5. 83.78 < 10−4 6. 92.89 < 10−4 6. 66.92 < 10−4

6. 38.25 < 10−4 5. 75.41 < 10−4 5. 85.77 < 10−4

1. 21.96 < 10−4 1. 25.38 < 10−4 1. 17.80 < 10−4

8. 11.24 < 10−3 8. 15.56 < 10−4 2. 9.40 < 0.01

2. 7.03 0.01 2. 6.29 0.01 8. 7.78 < 0.01

4. 2.17 0.14 10. 2.61 0.11 9. 1.97 0.16

10. 2.45 0.12 4. 2.60 0.11 4. 1.03 0.31

9. 2.21 0.14 9. 2.70 0.10 7. 0.99 0.32

7. 0.95 0.33 7. 0.90 0.34 10. 0.17 0.68

3. 0.05 0.83 3. 0.01 0.98 3. 0.13 0.72
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variable entered sequentially using the log-rank statistic compared with either Buckley-James or Gehan.

We found that FSR with γ0 = 0.1 will result in a final model which includes ascites, sex, and spiders for

Buckley-James and Gehan statistics. Even at γ0 = 0.1, FSR using log-rank statistics did not include the

next variable in the sequence, i.e. sex. This phenomenon may be partially explained by Figure 2, where

for α in a neighborhood about 0.10, γ̂P (α) appears to flatten out in panels (a)-(b).

In Figure 3, we compare the final model results among FSR, SCAD, Hard thresholding, and LASSO. We

display approximate 95% percent confidence intervals of coefficient estimates for each independent variable

entering the final model. The variable index number is defined in Table 1 and given across the ordinate.

We find that for the ten main effects considered, FSR and SCAD agree generally on five variables in final

model. The hard thresholding penalty and LASSO include at least one more variable depending on the

statistic. The log-rank statistic with hard or LASSO penalty includes sex in addition to the five variables

in the FSR/SCAD model. Both Buckley-James and Gehan statistics include ascites, sex, and spiders using

the hard thresholding penalty but drop sex when using the LASSO penalty.

7 Remarks

This paper describes methods for selecting variables in the semiparametric linear regression model for

censored outcomes and is a summary of research presented in several talks by the author, starting with

one given at Brown University in January 2005. The methods are novel and differ fundamentally from

other methods (e.g. Tibshirani, 1996; Fan and Li, 2001) for censored data in that we do not require a

proportional hazards assumption. Under certain regularity conditions on the penalty functions, we derive

the large sample properties for penalized weighted log-rank statistics and give an approximate result

for penalized Buckley-James statistics. We note that the technical proofs and numerical algorithms are

quite general and may be applicable to wider class of non-smooth estimating functions under suitable

regularity conditions. In addition to penalized estimating function methods, we also describe a variable

selection method based on controlling the false selection rate (FSR). The large sample properties of FSR

for Buckley-James and weighted log-rank statistics are difficult to derive, in part, because they rely the

asymptotic properties of forward selection. In simulation studies, we found that FSR and SCAD have

similar operating characteristics and perform better than LASSO when the model fraction is low while

LASSO performs better than FSR and SCAD when the model fraction is high. In the (generalized)
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Figure 3: Analysis results for Mayo primary biliary cirrhosis data. Vertical lines represent approximate

95% confidence intervals for each of ten potential independent variables included in the final model. Three

lines for each independent variable represent estimates from Buckley-James (left), Gehan (center), and

log-rank (right) statistics
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linear regression model setting, Wu, Boos, and Stefanski (2007) give heuristic arguments that FSR is a

reliable, approximate method to control the false selection rate where no similar methods exist. Simulation

studies suggest that the FSR method has the desired properties and the algorithm, albeit computationally

intensive, is relatively straightforward to implement.

The penalized estimating function methods presented here (as with all penalized likelihood and penalized

least squares methods) depend on the selection of a regularization parameter λ that controls the shrinking

of parameter estimates. For a given data set, we proposed selecting λ by minimizing the function GCV(λ).

The numerator of GCV(λ) is the loss function LG(β), which reduces to the well-known Wilcoxon objective

function for uncensored data. An anonymous referee noted that other loss functions may also be substituted

for LG(β); in particular, one can attempt to replace RSS(λ)/n in GCVLS(λ) with, say, its conditional

expectation given the observed data. In earlier drafts, we considered inversely-weighted complete case

estimators for RSS(λ)/n while an anonymous referee suggested the Kaplan-Meier estimator based on

{(Yi − α̂ − β̂
T

λXi,∆i), i = 1, . . . , n} (for α̂ an estimate of α = E(ǫ1)) or the bivariate Kaplan-Meier

estimator of Stute (1993). Generally, these methods must wrestle with thorny issues including (i) the

estimation of E(ǫ1), or (ii) stable tail behaviour in the distribution of the errors ei(β) in (3), the censoring

distribution, or both. Each of (i) and (ii) can become problematic and lead to theoretical and numerical

challenges. At the same time, under certain conditions and depending on the particular goals of model

selection for a given data set, there may be several reasonable cross-validation measures which deserve

attention. A careful comparison between such measures is of interest (to the author, anyway) but beyond

the scope of the current paper. In any case, the asymptotic properties in Section 3 and numerical algorithms

in Section 4 are valid irrespective of the cross-validation technique.

On a related topic, deriving explicit expressions for optimal smoothing parameters has received little

attention in the model selection literature. We take this as mild evidence that it is a difficult problem,

even in least squares regression with uncensored data. In penalized least squares regression with L1 penalty,

however, some related work has been completed; notable papers include Huang (2003), Rosset and Zhu

(2004). These papers argue that, with probability tending to one, there exists a range of regularization

parameters λ such that the average squared prediction error of the lasso estimator is less than that of

ordinary least squares. The proofs of these results generally rest on the property that β̂λ is piece-wise

linear (Osborne et al., 2000; Efron et al. 2004). In this paper, we considered penalized estimators which

do not correspond necessarily to be the minimizer of any loss function. Even with a proper penalized loss
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function with L1 penalty, e.g. generalized linear models, the coefficients paths β̂λ are no longer piece-wise

linear. In short, the earlier arguments of Rosset and Zhu (2004) do not extend to the current model nor

to many other models where cross-validation is in common usage.

Acknowledgements

We acknoweldge the comments of the associate editor and two anonymous referees which improved the

manuscript significantly. The research of the author was supported in part by grants from the National

Institutes for the Environmental Health Sciences (P30ES10126, T32ES007018), the National Institutes

of Allergies and Infectious Diseases (R03AI068484), and Emory’s Center for AIDS Research. We also

acknowledge the assistance of Donglin Zeng with technical details related to the proof of Theorem 1 and

thank Eugene Huang and Dennis Boos for many helpful discussions. Finally, we thank Wu, Boos, and

Stefanski for allowing us to view a version of their manuscript before publication.

Appendix 1

Regularity Conditions

We impose the following regularity conditions to prove statements in Section 3. These are given as Con-

ditions A1, A2, A4-A7,A9-A10 in Strawderman (2005, p.662) to yield a consistent, asymptotically normal

estimator sequence β̂W . We also note that for inference in the semiparametric accelerated failure time

model, similar assumptions appear as conditions (A)-(F) in Tsiatis (1990, p.357-358) and conditions (A.1)-

(A.3) in Ritov (1990, p. 306).

A1. We require the error distribution F in (1) satisfy F (t) =
∫ t
0 f(u) du, where f(·) has continuous first

and bounded second derivatives.

A2. We require that random vectors {Ni(t,β0), I(ei(β0) ≥ t),Xi, t ≥ 0} are independent and identically

distributed.

A3. Censoring is noninformative.
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A4. We require that X1 is bounded with probability one.

A5. Let s(j)(t,β) = limn→∞ S(j)(t,β), j = 0, 1, 2 defined in Section 2.1. We require that s(j)(t,β), j =

0, 1, 2 are continuous for (t,β) ∈ ℜ+ ×N (β0), where N (β0) is some neighborhood of β0.

A6. The upper limit of integration τ satisfies inf{t ∈ [0, τ ] : s(0)(t,β0)} > 0.

A7. For (t,β0) ∈ [0, τ ] ×N (β0), W (t,β) is of bounded variation and there exists a continuous, bounded

deterministic function w(t,β) such that |W (t,β)−w(t,β)| converges to zero in probability uniformly.

A8. The asymptotic slope matrix AW is nonsingular.

Condition A1 constrains the density of the errors ǫ to be sufficiently smooth. Condition A2 ensures that

statistics defined as sample averages follow an ordinary weak law of large numbers. Condition A3 allows

consistent estimation of β0 without restrictive assumptions (and knowledge) on the underlying censoring

mechanism. Conditions A1-A4 allow one to construct martingale processes with desirable features (e.g.

orthogonal, square-integrable, mean zero) that lead to an elegant way for studying the limiting behaviour

of the score function n−1/2UW (β). Condition A5 is used for placing bounds on the score function in

neighbourhoods of β0. Condition A6 controls unstable tail behaviour and ensures that the denominator

of X̃{t,β} is positive for all t, t ≤ τ . Condition A7 restricts the class of weight functions which lead to

a well-behaved score function. Conditions A1-A7 imply that AW (β) exists and is continuous at β = β0.

Conditions A5 plus A8 ensure that β0 is unique. Additional details on the roles of these assumptions may

be found in Strawderman (2005).

Appendix 2

Proof of Theorem 1

We first prove part (i). Note that
√

nbλn(β0) → 0 by condition Q1(ii). Consider β such that |β − β0| ≤
Mn−1/2. By conditions A1-A8 in Appendix 1 and condition Q1(ii),

n−1/2UP
W (β) = n−1/2UW (β0) +

√
nAW (β − β0) + rn −√

n{bλn(β) − bλn(β0)} (A.1)

for some random variable rn = op(1). If β0j 6= 0, then sgn(βj) = sgn(β0j), so that

qλn(|βj |)sgn(βj) − qλn(|β0j |)sgn(β0j) = {qλn(|βj |) − qλn(|β0j |)}sgn(βj);
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if β0j = 0, the above equation holds naturally. Thus, it follows from the mean-value theorem that

n−1/2UP
W (β) = n−1/2UW (β0) +

√
nAW (β − β0) + rn

−√
ndiag

{
q′λn

(|β∗
j |)sgn(βj)

}
(β − β0). (A.2)

where β∗
j lies between βj and βj0. Let β̂n = β0 − n−1/2A−1

W n−1/2UW (β0). By conditions A1-A8 from

Appendix 1, β̂n is a
√

n-consistent estimator of β0. Thus, for any ǫ > 0 and δ > 0, there exists an M such

that P (|β̂n − β0| < Mn−1/2 and |rn| < δ) > 1 − ǫ. On this set, we have

|n−1/2UP
W (β̂n)| ≤ √

n

d∑

j=1

|q′λn
(|β∗

j |)||βj − β0j | + |rn|.

On the other hand, if β0j 6= 0, q′λn
(|β∗

j |) = q′λn
(|β0j |)+ o(1) → 0 by condition Q1(ii); if β0j = 0, q′λn

(|β∗
j |) ≤

sup|β|≤Mn−1/2 |q′λn
(|β|)| → 0 by condition Q1(iii). As a result, when n is large, |n−1/2UP

W (β̂n)| ≤ 2δ. That

is, P (|n−1/2UP
W (β̂n)| > 2δ) < ǫ. Therefore, n−1/2UP

W (β̂n) = op(1).

To prove the second half of part (i), we consider β on the boundary of a ball around β0, i.e., β = β0+n−1/2u

with |u| = r for a fixed constant r. By equation (A.2), we have

n−1/2(β − β0)
T AT

WUP
W (β)

= (β − β0)
TAT

W

{
n−1/2UW (β) − n1/2bλn(β)

}

= Op(|β − β0|) + n1/2(β − β0)
T AT

WAW (β − β0)

−n1/2(β − β0)A
T
W diag{q′λn

(|β∗
j |)sgn(βj)}(β − β0).

Since AW is nonsingular, the second term on the right-hand side is larger than a0r
2n−1/2, where a0 is the

smallest eigenvalue of AT
WAW . The first term is of order rOp(n

−1/2). As before, maxj q′λn
(|β∗

j |) → 0, so

the third term is dominated by the second term. Therefore, for any ǫ, if we choose r large enough so that

for large n, the probability that the absolute value of the first term is larger than the second term is less

than ǫ, then we have

P

[
min

|β−β0|=n−1/2r
(β − β0)

TAT
W UP

W (β) > 0

]
> 1 − ǫ.

Applying the Brouwer fixed-point theorem to the continuous function UP
W (β), we see that

min
|β−β0|=n−1/2r

(β − β0)
TAT

W UP
W (β) > 0

implies that AT
W UP

W (β) has a solution within this ball, or equivalently, UP
W (β) has a solution within this

ball. That is, we can choose an exact solution β̂n to UP
W (β) = 0 with β̂n = β0 + Op(n

−1/2).
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To prove part (ii), we consider the sets in the probability space: Cnj =
{
β̂nj 6= 0

}
, j = dN + 1, . . . , d. It

suffices to show that for any ǫ > 0, when n is large enough, P (Cnj) < ǫ. Since β̂nj = Op(n
−1/2), there

exists some M such that when n is large enough,

P (Cnj) < ǫ/2 + P
{
β̂nj 6= 0, |β̂nj | < Mn−1/2

}
.

Using the jth component of (A.1), we obtain

op(1) = n−1/2UWj(β̂0) +
√

nAWj(β̂n − β0) + op(1) −
√

nqλn(|β̂nj |)sgn(β̂nj).

The first three terms on the right-hand side are of order Op(1). As a result, there exists some M ′ such

that for large n,

P (
√

nqλn(|β̂nj |) > M ′) < ǫ/2.

Since
√

nλn lim
n

λ−1
n inf

|β|≤Mn−1/2

qλn(|β|) → ∞

by condition Q1, β̂nj 6= 0 and |β̂nj | < Mn−1/2 imply that
√

nqλn(|β̂nj |) > M ′ for large n. Therefore,

P (Cnj) < ǫ/2 + P (
√

nqλn(|β̂nj |) > M ′) < ǫ.

To prove part (iii), we use the following fact:

op(1) = n−1/2UP
W (β̂n) = op(1) + n−1/2UW (β0) +

√
nAW (β̂n − β0) −

√
nbλn(β̂n).

We consider the first dN components of the above expression. After the Taylor series expansion of the last

term, we conclude that

√
n

{
AW11 + Σ11)(β̂n1 − β01 + (AW11 + Σ11)

−1bλn(β0)
}

=
√

n




UP
W1(β0)

...

UP
WdN

(β0)


 + op(1) →d N(0,BW11).

Appendix 3

Simulated pseudo predictors.
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The FSR method uses p simulated pseudo variables for each of n subjects over M augmented data sets

A1, . . . ,AM . Here, we give details on how vectors of pseudo variables X∗
i are defined. Rather than

simply simulating standard normal variates, numerical studies in Wu et al. (2007) suggest there is some

advantage in defining pseudo variables through random permutations of the original design matrix X.

For simplicity, assume that p = d and let P(X) be a n × d randomly permuted design matrix. If xj =

(X1j , . . . ,Xnj)
T , then the j-th column of P(X) is perm(xj), where perm(·) is the random permutation.

Let X∗ = (X∗T
1 , . . . ,X∗T

n )T be an n × d block of pseudo variables defined through

X∗ = (In − PX)P(X)

PX = (1n,X)
{
(1n,X)T (1n,X)

}−1
(1n,X)T

where In is an n-dimensional identity matrix and 1n is an n-dimensional column vector of ones. Defined in

this way, the pseudo variables have desirable characteristics such as having the same sample moments as the

original columns in the design matrix and orthogonality between the new pseudo variables and the original

d covariables. As Wu et al. allow p > d, then defining the columns of P(X) through modular arithmetic

allows for a precise definition of X∗. Finally, Wu et al. note that having more than d pseudo variables

does not significantly improve FSRs performance in small samples and, in the current presentation, the

additional notational complexity is unnecessary.
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