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SUMMARY

Establishing and characterizing exposure–biomarker relationships is an important problem in molecular
epidemiology. The problem is difficult due to several complicating features, namely, the biomarker response
is a nonlinear function of exposure and unknown parameters; variation in exposure and biomarker levels
occurs both within and between subjects; and errors tend to be heteroscedastic. To overcome some of the
statistical challenges in analysing such data, it is common for the investigator to make several assumptions
about the data structure. For example, it is common to assume that the natural logarithm of right-skewed,
biomarker measurements lead to homoscedasicity and normality so the effect of outliers is minimized and
Gauss–Markov theory is applicable. In this paper, we compare a lognormal maximum likelihood estimator
(MLE) to generalized estimating equations (GEE) for drawing statistical inference in a nonlinear model
of a benzene biomarker (benzene oxide–albumin adducts) as a function of benzene exposure. We explore
the characteristic properties of the lognormal MLE under a certain type of model misspecification and
compare its small sample performance to the estimating equation approach in simulation studies. We show
that the multiplicative lognormal model can lead to severe biases for modest deviations from the true
outcome (biomarker) distribution. Furthermore, the lognormal MLE can exhibit very poor small sample
properties even under the true model. All methods are applied in a novel data analysis from a study of
benzene-exposed workers in China. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nonlinear models are popular in environmental health, particularly in kinetics. For example,
consider the situation where one wishes to relate a local source of exposure (in the community or
at the workplace) to levels of some biomarker in the exposed population. Rather than posit a (gen-
eralized) linear model relating biomarker levels directly to exposure, environmental scientists often
relate the two through a series of biological and environmental processes. The partial differential
equations that formulate these stochastic processes often result in statistical models that are non-
linear in the parameters and possess heteroscedastic errors. In this article, we compare two popular
strategies for analysing such data and apply the methods to a study of benzene-exposed workers.

When a person is exposed to a chemical in the air, the rate of uptake into the body is determined by
the physical and chemical properties of the contaminant and by the physiological characteristics of
the subject. The subject eliminates the chemical from the body through several different processes,
including passive clearance, e.g. in breath and metabolism. Passive clearance processes tend to fol-
low first-order linear kinetics over a wide range of exposure levels while metabolism tends to follow
nonlinear (saturable) Michaelis–Menten-like kinetics [1]. While the adverse health effects of ben-
zene exposure are well documented [2, 3], relatively little is known about the mechanism of toxic ac-
tion in humans other than the fact that toxicity requires metabolism to other products [4]. Since it is
believed that all benzene metabolism proceeds through the initial metabolite, benzene oxide, adducts
of benzene oxide and human serum albumin (BO–Alb) have been recommended as biomarkers of
benzene metabolism [1]. In a study of factory workers in China, biomarker outcomes (levels of BO–
Alb) and benzene exposure levels (inhaled air concentration over an 8-h workday) were collected.
The attempts at modelling these Chinese data motivated the scientific investigation in this paper.

Nonlinear regression has been reviewed extensively in the statistics literature [5–8], with a key
component being the handling of non-constant variance in the observed outcomes. For example,
in the analysis of metabolism-based biomarkers, we often see that the variance of the biomarker
outcome increases as the mean of the biomarker increases. In this paper, we consider two different
approaches which model the observed biomarker outcome Y as a function of the mean biomarker
outcome � in different ways. One approach posits a multiplicative model, Y = ��∗ where �∗ is a
random variable with mean one, while the second approach writes the observed biomarker outcome
as the sum of the mean plus error, i.e. Y = � + �, where � is a random variable with mean zero.
An illustration of data generated from these two models is given in Figure 1.

Figure 1 illustrates the fact that for any given data set, it may be difficult to determine which
error model, if any, generated the observed data. One may never be able to completely rule out
the possibility that the additive error model generated the observed data in Figure 1(a) and vice
versa for the multiplicative model and panel Figure 1(b). One goal of this paper is to illustrate
the sensitivity of the multiplicative error model under modest deviations from the true model. In
addition, we show via simulation that moment-based approaches using an additive error model
will often fit data from a multiplicative error model reasonably well; however, we cannot make a
similar statement about the converse based on our small sample studies.

By taking the natural logarithm of both sides of our multiplicative error model, we have an
additive error model on the logarithmic scale—log Y = log � + log �∗. This transformation leads
to our first of two methods for modelling the relationship between a biomarker outcome and
exposure, namely, a parametric lognormal model. In practice, one assumes the natural logarithm of
the biomarker outcomes are normally distributed and proceeds with standard linear model packages
(e.g. SAS PROC GLM, R/S glm). For more complicated models with measurement error in the
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Figure 1. Illustration of data generated from multiplicative versus additive error model. The simulated
biomarkers in panel (a) are lognormally distributed whereas the biomarkers in panel (b) are normally
distributed with variance increasing as a power of the mean. The biomarker data in both panels have

constant coefficient of variation.

exposure and/or limits of detection in the biomarker outcomes, one may proceed in a likelihood
framework where the biomarker outcomes are assumed to follow a lognormal distribution. Our
second method is a method-of-moments estimator, where one posits models for the first and second
moment (that is, the mean and variance) of the biomarker outcome. The latter approach is often
called the generalized estimating equations (GEE) [8, 9] method in the biostatistical literature. The
fundamental difference between the two methods is GEE assumes the analyst ‘knows’ or models
correctly the first moment (that is, the mean model), whereas the lognormal approach assumes
the analyst knows every moment, thereby yielding the entire distribution function. An important
feature of GEE methodology is the robust variance (sandwich) estimator, as opposed to the model-
based estimator, for estimating the asymptotic covariance of the regression parameter estimates.
Traditionally, the statistical mantra has been to expect the robust standard error estimates (SEEs)
to be wider than their model-based counterparts, on average, in exchange for protection against
misspecified variance or correlation models. Recent investigations, including our own simulation
studies in Section 6, suggest that the robust sandwich estimate is not a panacea to variance
misspecification [10].

The paper is organized as follows. First, we summarize the scientific model for benzene
metabolism in Section 2. Then we describe two approaches for estimating the parameters of
interest in Section 3 and describe potential bias in the maximum likelihood estimator (MLE) under
certain model misspecification in Section 4. We present a novel analysis of the data from the
Chinese study in Section 5, then present simulation studies in Section 6, and conclude with a
discussion in Section 7.

2. A PHYSICAL MODEL RELATING BENZENE EXPOSURE TO ITS PRODUCTS

Recently, Rappaport et al. [11] applied a physiologically based toxicokinetic (PBT) model for
volatile organic compounds (VOCs), including benzene, which is summarized in Figure 2. The
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Figure 2. Physiologically based toxicokinetic model for volatile organic compounds. The four tissue groups
include rapidly perfused tissues (RPT), slowly perfused tissues (SPT), fat, and liver.

model is accepted as a reasonable approximation for the uptake and elimination of VOCs in
mammals. The input to the model is the airborne contaminant, which enters the lung at the alveolar
ventilation rate. The chemical is absorbed into the arterial blood according to its blood–air partition
coefficient and is subsequently distributed to four parallel tissue groups—rapidly perfused tissues
(RPT), slowly perfused tissues (SPT), fat, and liver (the only metabolizing tissue)—at tissue-
specific perfusion rates. The chemical exits the body passively, by exhalation, or by metabolism
in the liver. In the case of benzene, the initial metabolite is benzene oxide. The rate (R) at which
the chemical is metabolized in the liver is governed by Michaelis–Menten kinetics, i.e.

R = Vmax(CL/�L)

Km + (CL/�L)
(1)

where the liver-blood chemical concentration (CL/�L) is expressed as the ratio of the concentration
of the chemical in the liver to the tissue–blood partition coefficient, �L, Vmax is the maximum rate
of metabolism (mg/h), and Km (mg/l) is the liver-blood concentration at which R = Vmax/2.

Under certain regularity conditions on the metabolic process, e.g. steady-state assumptions,
a three-parameterMichaelis–Menten-like model provides an adequate summary of the contaminant–
metabolite or exposure–biomarker relationship in the PBT model in Figure 2. For i = 1, . . . ,m,
let Yi = (Yi1, . . . , Yini )

′ denote an ni × 1 vector of biomarker outcome measurements for the i th
subject and Xi denote the (scalar) observed exposure level. Then, writing the conditional mean
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biomarker response for the i th subject, E(Yi |Xi ) = �i (b), we assume the mean outcome vector is
related to chemical exposure through the following model:

�i (b) = �0 + �1Xi

�2 + Xi
(2)

where b= (�0, �1, �2)
′ is a trivariate vector of population parameters. Different versions of (2) have

been used in wide-ranging applications [12, 13]. In our application, we interpret �1 approximately
as the population mean of Vmax across subjects and �2 a ‘surrogate’ for the population mean
of Km across subjects. Under additional assumptions on body weight, tissue volumes, partition
coefficients, and respiratory rate, it is possible to derive an unbiased estimator for the population
mean Vmax and Km from �1 and �2, respectively [11]. The intercept, �0, represents the background
level of the mean biomarker for the i th subject, is an important parameter and cannot be assumed
to be negligible. For this reason, we term �i (b) a ‘Michaelis–Menten-like’ model. When the
intercept is exactly zero, then the mean outcome model �i (b) is precisely the Michaelis–Menten
or Beverton–Holt model.

3. METHODS

3.1. A multiplicative lognormal approach

A common strategy for modelling outcomes with long-right tails is to assume that the natural
logarithm of the outcome is normally distributed. Using the abbreviation �i for �i (b), we write
the following multiplicative model [14–16]:

Yi j = �i �
∗
i j , j = 1, . . . , ni (3)

where E(�∗i j ) = 1 for all j . It is well known that if W is a Gaussian random variable with mean

a and variance b2, then E(eW ) = ea+b2/2. Consequently, an alternative model formulation to (3)
with additive errors [17–22] and possibly correlated outcomes is

logYi =
(
log �i − �2

2

)
1ni + �X1/2

i (a†)ei (4)

for � a scalar, ei an ni -dimensional standard Gaussian random vector, and Xi a ni -dimensional
square correlation matrix, and a† are correlation parameters. The model in (4) adds a correction
factor (i.e. �2/2) to preserve the conditional mean model on the original scale, that is, E(Yi j |Xi ) = �i .
Also, for � small,

(4) ≈ (log �i )1ni + �X1/2
i (a†)ei (5)

Hence, the approximate model in (5) is a special case of the ‘transform-both-sides’ (TBS)
methodology [23]. In model (5), the analyst assumes a particular a priori transformation of the
original biomarker outcomes Yi and mean �i which leads to residuals that achieve both normal-
ity and homoscedasicity and does not estimate the transformation via the Box–Cox family of
transformations [24].
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3.2. An estimating equation approach

A different estimation strategy avoids transformations altogether, places no distributional assump-
tions on the errors, but requires a model for the conditional covariance cov(Yi |Xi ) as well as the
conditional mean E(Yi |Xi ); this is referred to as the quasilikelihood and variance function method
[9, 25]. For Yi j , the j th biomarker outcome on subject i , we write

var(Yi j |Xi ) = �2g2(�i j , Ai ,W)

for a user-specified variance function g(·), fixed auxiliary variables Ai , and a finite number of
variance parametersW . In our analysis of the Chinese data in Section 5, we consider several variance
functions, including the common power-of-the-mean model, g1(�i j , Ai ,W) = �ϑ

i j , of which constant
coefficient of variation (CV) models, such as gamma and lognormal, are special cases when the
power ϑ = 1. In addition, we let Ai be the indicator for unexposed subjects in the study, i.e. Ai = 1
for workers from the food-processing or flour plant and zero otherwise. To model the correlation
among replicate biomarkers within a subject, one writes the multivariate conditional covariance
cov(Yi |Xi ) as

Ri =G1/2
i (b,W)Xi (a)G

1/2
i (b,W)

where Gi (b,W) = diag{g2(�i1, Ai ,W), . . . , g2(�ni , Ai ,W)}, Xi (a) is an ni × ni square correlation
matrix [8]. Note, the correlation parameters a (no ‘dagger’) represent the correlation parameters of
the biomarker outcomes on the original scale whereas a† represent correlation of the transformed
biomarker outcomes.

Let c denote a q-vector of variance parameters, i.e. c= (�,W, a). Then, the mean parameters b
may be estimated by solving the following trivariate vector of estimating equations:

U�(b, c) =
m∑
i=1

D′
iR

−1
i (Yi − �i ) = 0

where Di = (�/�b)�i , the p-dimensional gradient of �i with respect to b. Using a ‘pseudo-
likelihood’ approach to variance function estimation [26–28], our variance parameters c minimize
the objective function

PL=
m∑
i=1

PLi (�,W, a) =
m∑
i=1

log |�2Ri | + �−2(Yi − �i )
′R−1

i (Yi − �i ) (6)

Hence, our variance parameters simultaneously solve the estimating equations

U�(b, c) =
m∑
i=1

(
�
�c

)
PLi (�,W, a) = 0

where the exact expressions depend upon user-specified variance functions and assumed correlation
model for replicate biomarker outcomes within subjects. In practice, it is unusual to solve the whole
system of estimating equations directly, i.e.(

U�(b, c)

U�(b, c)

)
=
(
0

0

)
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Instead, a multi-stage estimation procedure is used [7, 29]. For example, in this paper, we iteratively
solve the estimating equations U�(b, c) = 0 and then minimize PL using numerical minimization
techniques that do not require derivatives. (An exemplary step-by-step algorithm is given by
Davidian and Giltinan [8, Chapter 2, pp. 34–36]) When the variance function g(·) and the correlation
structure Xi (a) are specified correctly, m1/2(b̂ − b) converges in distribution to a mean-zero,
Gaussian random vector with covariance V. A consistent estimator for V is V̂GLS,

VGLS = �̂2
(

m∑
i=1

D′
iR

−1
i Di

)−1

where �̂ is the first element in the solution vector to the estimating equation: U�(b, c) = 0 [6, 8]. To
guard against possible misspecification of the variance and correlation models, a robust covariance
estimator for V is V̂R, where

VR =
(

m∑
i=1

D′
iR

−1
i Di

)−1 [ m∑
i=1

D′
iR

−1
i (Yi − �i )(Yi − �i )

′R−1
i Di

](
m∑
i=1

D′
iR

−1
i Di

)−1

Under suitable regularity conditions, it is well known that m1/2(b̂ − b) converges in distribution
to a mean-zero, Gaussian random vector with variance V even if cov(Yi |Xi ) �= �2Ri [9]. Thus,
we may obtain valid statistical inference for the mean parameters b, assuming only that the mean
model �i (b) is specified correctly.

4. SENSITIVITY OF THE LOGNORMAL MAXIMUM LIKELIHOOD

In this section, we conduct a sensitivity study of the lognormal MLE for the one-sample problem
of estimating the mean E(Y ) = � under a constant CV model and then consider the regression
problem. The purpose of this investigation is to understand how robust the parametric estimator
for the mean E(Y ) is to incorrect distributional assumptions. An illustration of residual patterns
consistent with the variance increasing like a power of the mean, i.e. �ϑ

i j , is given in Figure 3.
In Figure 3(a), the residual pattern is simulated from normally distributed data with a constant CV

(i.e. ϑ = 1). The residual pattern displayed in Figure 3(b) has power ϑ = 0.85 although the pattern
looks almost identical to that in panel (a). Here, we only wish to emphasize the point that residual
patterns may appear to be consistent with a constant CV model when the true data generating
process is one with non-constant CV. Estimating the mean parameters b with an incorrect variance
function g(�i j , Ai , ϑ) will generally result in a less precise estimate. Our MLE is based on a
multiplicative lognormal model, not the additive normal MLE following the generalized nonlinear
model framework [6]. The comparison considered here is germane to the analysis below and
helpful to researchers where lognormal assumptions are often made (e.g. environmental health).

With some abuse of notation, let Yi , . . . , Ym be lognormally distributed, where

log Yi = log � − �2

2
+ ��i

where �i are iid mean-zero, Gaussian random variables and � known. Assuming � known, the MLE
for � is

�̂LN = exp(T̃ + �2/2) (7)

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. (in press)
DOI: 10.1002/sim



B. A. JOHNSON AND S. M. RAPPAPORT

10 20 30 40

Constant CV

10 20 30 40

Nonconstant CV

R
aw

 R
es

id
ua

l

(a)

20

−20

40

60

−60

00

R
aw

 R
es

id
ua

l

(b)

20

−20

40

60

−60

Figure 3. Illustration of residual patterns for simulated data generated from variance models with constant
coefficient of variation (CV) versus non-constant CV. In both panels, the residuals are simulated as mean
zero Gaussian random variables with variance {��i (b)

ϑ}2, where �i (b) is the Michaelis–Menten model
(i.e. �0 = 0, �1 = 50, �2 = 25). In panel (a), we let �= 1 and ϑ = 1, whereas � = 1.5 and ϑ = 0.85 in panel
(b). Incorrectly modelling the residuals in panel (b) using any constant CV model, either normally or
lognormally distributed, will result generally in a loss of efficiency for the mean parameter estimates, b̂.

where T̃ = n−1∑n
i=1 log Yi . By the law of large numbers and the continuity theorem, �̂LN converges

in probability to

�0 = exp{E(log Y ) + �2/2} (8)

A direct calculation of E(�̂LN), assuming the correct lognormal density, shows that bias(�̂LN) = exp
(�2/2m) or trivially that �0 = � in (8).

Remark
A closely related MLE to estimators considered in this paper is one given in Carroll and Ruppert
[6, Chapter 2]. Assume that Yi are iid normal with mean � and variance �2�2, � known. Then the
CV is constant and the MLE for � is

�̂N = T 2
1 + 4�2T2 − T1

2�2

where T1 =m−1∑m
i=1 Yi and T2 =m−1∑m

i=1 Y
2
i [6]. We note that these two MLEs, �̂LN and �̂N

are very different, and we do not discuss �̂N in the sequel.

To consider how �̂LN might behave under slightly different models, we wish to express �0
in the moments and cumulants of Y . Define �k, k = 2, . . . , as the central moments of Y and
� j , j = 1, . . . , n as the cumulants and rewrite �2 in (7) as var(logY ). So, �0 = �B where

B = exp

{
∞∑
k=2

(−1)(k−1)�k
k�k

+ var(log Y )/2

}
(9)
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Using a first-order Taylor-series approximation, var(log Y ) ≈ �2/�21; then, define

B† = exp

{
− �2
2�21

+ �3
3�31

− �4 + 3�22
4�41

+ �2
2�21

}

= exp

{
�3/22 �1
3�31

− (�2 + 3)�22
4�41

}
(10)

where �1, �2 are the skewness and kurtosis excess coefficients, respectively. In the generalized
nonlinear model with variance proportional to some power of the mean, say, �2 = �2�2(1+ϑ)

1 , and
replacing �1 with �, then

B† = exp

[
�3�3ϑ

12
{4�1 − 3(�2 + 3)��ϑ}

]
(11)

Here, we see that B† is a complicated function of the mean �, variance parameters � and ϑ, skewness
�1 and kurtosis excess �2. It is not obvious that B

† will be ‘close’ to one so that �̂LN will have
small bias under the general power-of-the-mean model. For the multiplicative lognormal model
under which we derived the MLE, �̂LN, B is exactly one and B† is ‘close’ to one (see Appendix).
Also, if Y1, . . . , Ym are iid normally distributed with constant CV (i.e. ϑ = 0, �1 = �2 = 0), then
B† = exp(−3�4/4) ≈ 1− 3�4/4. Hence, we might expect the lognormal MLE to fit well normally
distributed data with small, constant CV but to be biased when the variance of Y does not behave
like a constant power of �.

We now turn to the three-parameter regression setting. In the regression setting under the
multiplicative lognormal model in (3)–(4), the score vector for b is

Ũ�(b) =
m∑
i=1

(
�
�b

log �i

)
X−1

i (a†)
(
logYi − log �i + �2

2

)
Observe that Ũ�(b) will not, in general, have mean zero under the truth if EYi = �i as we noted
above. However, in a constant CV model, further simplification of Ũ�(b) is revealing. Using
notation from Section 3.2,

Ũ�(b) =
m∑
i=1

DiM
−1/2
i X−1

i (a†)
(
logYi − log �i + �2

2

)

=
m∑
i=1

DiM
−1/2
i X−1

i (a†)M−1/2
i Z∗

i

=
m∑
i=1

DiC
−1
i (a†)Z∗

i

whereMi = diag(�2i1, . . . , �
2
ini

),Ci (a†) =M1/2
i Xi (a†)M1/2

i , andZ∗
i =M1/2

i (logYi−log �i+�2/2).

For power-of-the-mean variance function with ϑ = 1, g(�i j , Ai ,W) = �i j andGi =Mi . Thus, Ũ�(b)

and U�(b, c) have the same weight, DiR
−1
i (or equivalently, DiC

−1
i ) on each contribution to the

score. Continuing in a heuristic manner, when Yi and �i are small, then (logYi − log �i + �2/2)
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is approximately c(Yi − �i ), c a constant. In the other extreme, when Yi and �i are large, the
weight DiR

−1
i is small due to large variance (via Ri ). Consequently, one may expect the i th

contributions to the score functions to be on the same order despite modest differences in the
raw residuals, (logYi − log li ) and (Yi − li ), respectively. Hence, on this heuristic level, one
might expect the two score functions Ũ�(b) and U�(b, c) to yield similar point estimates under
any constant CV model, even, say, under an additive error model (see Section 6) rather than a
multiplicative one (3) as long as the CV is small. A formal study of bias in Ũ�(b) under different
misspecified models involves calculating EF0{Ũ�(b)}, where F0 is the true outcome distribution (or
conditional distribution given the exposure Xi ) and EF0 the expectation under F0. In Section 6, we
explore the bias of Ũ�(b) under misspecified models through simulation studies.

5. ANALYSIS OF BENZENE DATA

Understanding the relationships between environmental exposures and subsequent biomarkers or
health-related outcomes continues to challenge scientists. Benzene is one of several contaminants
of keen interest because it is a known carcinogen and is ubiquitous in the environment. Al-
though scientists have studied benzene for more than a century, little is actually known about the
exposure–disease relationship. A better understanding of benzene metabolism will, in part, lead
to a better understanding of the mechanism which drives the exposure–disease relationship. The
main goal of the Chinese study was to investigate how the body metabolizes benzene. For this,
a total of 133 exposed and 51 control factory workers in Tianjin, China, were surveyed for five
weeks. The exposed subjects worked at a glue, shoe, or sporting goods factory while the control
subjects worked at a nearby food-processing or flour plant. All exposed subjects wore personal
monitors to measure the individual exposure levels on several days prior to blood collection (at
weekly intervals). Between four and six air measurements (that is, exposure measurements) per
individual were collected. For our data analysis in this paper, we use the average of the air mea-
surements to denote a subject’s shift-long exposure. A thorough description of the study appears
elsewhere [1].

While the investigators collected multiple surrogate exposure measurements from all exposed
subjects, only a fraction of them were included in a substudy where replicate biomarker measure-
ments were also collected on three subsequent Mondays. Specifically, 11 of 133 exposed workers
were included in the substudy and three replicate biomarker outcomes were observed for these
workers. One biomarker outcome was collected for every other worker in the study. A scatterplot
of the data is given in Figure 4 and analytic results using methods described in Section 3 are
displayed in Tables I and II.

Our first analysis of the Chinese data assumes that �i (b) follows the three-parameter Michaelis–
Menten model in (2) and that the power-of-the-mean variance function, g(�i j , Ai ,W) = �ϑ

i j . We
compare parameter estimates using GEE to estimates using the lognormal MLE and consider
three different correlation models for replicate biomarker outcomes within a subject: uncorrelated;
exchangeable; and autoregressive with lag one (AR1). As shown in Table I, parameter estimates
are similar whether one uses the multiplicative lognormal MLE or GEE. We also see that the
MLE yields smaller SEEs than the GLS SEEs for GEE. Interestingly, the robust SEEs are about
20% smaller than the GLS SEEs for �̂1 and �̂2. Finally, as we move across Table I from left
to right, although the mean parameter estimates b̂ change very little, we find the correlation
among replicate observations to be very strong. In fact, because the replicate biomarker outcomes
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Figure 4. Scatter plot of observed benzene albumin (BO–Alb, nmol/hg) adduct levels as function of
shift-long benzene exposure (ppm) in Chinese study. The Chinese study includes data on 184 factory
workers, 51 of whom are regarded as controls. A total of 11 out of 133 exposed workers had three

replicate biomarker outcomes for a grand total of 206 observations.

Table I. Parameter estimates assuming simple three-parameter Michaelis–Menten-like model.

Independent Exchangeable Autoregressive

Method �0,�1,�2 �,ϑ �0,�1,�2 �,ϑ, 	 �0,�1,�2 �,ϑ, 	

MLE 0.62, 2.18, 2.43 0.41†,— 0.62, 2.21, 2.43 0.41†,—, 0.67 0.62, 2.21, 2.43 0.41†,—, 0.48
(0.05, 0.15, 0.28) (0.05, 0.17, 0.30) (0.05, 0.17, 0.30)

GEEa 0.62, 2.21, 2.46 0.47, 1.0∗ 0.62, 2.21, 2.46 0.47, 1.0∗, 0.78 0.62, 2.21, 2.46 0.47, 1.0∗, 0.84
GLS (0.06, 0.17, 0.31) (0.06, 0.20, 0.35) (0.06, 0.20, 0.35)
Robust (0.06, 0.17, 0.31) (0.06, 0.17, 0.28) (0.06, 0.17, 0.28)

GEEb 0.62, 2.21, 2.46 0.45, 1.02 0.62, 2.21, 2.46 0.43, 1.06, 0.80 0.62, 2.21, 2.46 0.44, 1.05, 0.85
GLS (0.06, 0.17, 0.32) (0.06, 0.21, 0.35) (0.06, 0.21, 0.36)
Robust (0.06, 0.17, 0.30) (0.06, 0.17, 0.28) (0.06, 0.17, 0.28)

∗ϑ fixed and set equal to 1.0.
†Parameter estimate for � as in (4).
Note: Parameter estimates via lognormal maximum likelihood (MLE) and generalized estimating equations
(GEE) with power-of-the-mean variance function are presented. GEEa makes the constant coefficient of variation
model assumption (i.e. ϑ= 1) whereas GEEb does not make that assumption and treats ϑ as an unknown
parameter. We interpret �0 as the ambient level of mean biomarker and �1, �2 approximately as surrogates
for the population mean Vmax and Km, respectively. Three different assumptions about the correlation among
repeated observations for a given subject in the Chinese substudy are given across the top of the table.

were observed over three subsequent Mondays and BO–Alb is known to have a half-life of three
weeks, then it is sensible to assume that the correlated adduct levels follow an AR(1) correlation
model.
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Table II. Parameter estimates assuming three-parameter Michaelis–Menten-like
mean model and alternative variance functions.

Independent Autoregressive

g(·) �0,�1,�2 � W PL �0,�1,�2 �, 	 W PL

g1 0.62, 2.21, 2.46 0.45 1.02 412.65 0.62, 2.21, 2.46 0.44, 0.85 1.05 395.14
GLS (0.06, 0.17, 0.32) (0.06, 0.21, 0.36)
Robust (0.06, 0.17, 0.30) (0.06, 0.17, 0.28)

g2 0.61, 2.21, 2.45 0.50 1.62, 0.96 412.18 0.61, 2.26, 2.48 0.48, 0.84 1.70, 1.00 394.91
GLS (0.06, 0.17, 0.31) (0.06, 0.21, 0.35)
Robust (0.06, 0.17, 0.31) (0.06, 0.17, 0.28)

g3 0.64, 2.27, 2.72 1.98 0.53, 0.28 405.08 0.64, 2.31, 2.75 1.36, 0.84 0.77, 0.51 389.11
GLS (0.07, 0.17, 0.30) (0.07, 0.22, 0.35)
Robust (0.06, 0.19, 0.31) (0.06, 0.19, 0.31)

g4 0.65, 2.27, 2.72 2.75 0.38, 0.03 405.40 0.64, 2.32, 2.75 2.31, 0.83 0.45, 0.06 389.77
GLS (0.07, 0.17, 0.30) (0.07, 0.22, 0.34)
Robust (0.06, 0.19, 0.31) (0.06, 0.19, 0.31)

Note: A generalized estimating equations (GEE) strategy is employed with two different assumptions about the
correlation among repeated observations. Different variance functions g(�i j , Ai ,W) are given in (12)–(15).
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Figure 5. Residual plots from ordinary (OLS) and generalized least-squares (GLS) analyses. In panel (a),
we plot the raw fitted residual ri j = Yi j − �̂i j when �̂i j = �i j (b̂OLS) and b̂OLS is the OLS estimate fit to
the Chinese data. Note the residual pattern in panel (a) appears to be constant for mean biomarker levels
�i j less than about 4 ppm and then increase as a function of �i j . We plot the weighted or ‘studentized’

residual, ri j/g3(�̂i j , Ai , Ŵ), in panel (b), where �̂i j = �i j (b̂GLS) for the generalized least-squares estimate
using variance function g3(·) defined in Section 5.

Next, we consider more general variance functions motivated by inspection of the residual
plot from an ordinary least-squares fit in Figure 5(a). We note that for predicted mean biomarker
levels, the error variance remains relatively constant up to some level, say L , but then exhibits a
‘megaphone’ effect, for predicted values larger than L . Initially, we assume that the level L is an
effect of the study design, namely, the presence of a control group and then try related variance
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functions. We repeat our analysis of the Chinese data using the Michaelis–Menten conditional mean
model in (2) but now consider the following four variance functions, including the one-parameter,
power-of-the-mean variance function, listed as g1(·):

g1(�i j , Ai ,W) = �ϑ
i j (12)

g2(�i j , Ai ,W) = Aiϑ1 + (1 − Ai )�
ϑ2
i j (13)

g3(�i j , Ai ,W) = I (�i j<L)ϑ1 + I (�i j�L)�ϑ2
i j (14)

g4(�i j , Ai ,W) = I (�i j<L)ϑ1 + I (�i j�L) exp(ϑ2�i j ) (15)

where I (·) is an indicator function. Since �ϑ2
i j = exp(ϑ2 log �i j ), then g4(·) may be regarded as g3(·)

with ϑ2 simply estimated on a different scale. In any given data set, there may be small sample
differences between the two variance functions or substantive reasons to choose one variance
function over another. The results of our extended analyses using the new variance functions are
reported in Table II. Using the pseudo-likelihood (PL) as a criterion for model fit (smaller is better),
we find that the variance function which assumes a constant variance of the biomarker outcomes
in the control subjects and then increases like the power-of-the-mean in exposed subjects yields
no significant advantage over the simpler one-parameter variance function g1(·). However, using
either g3(·) or g4(·) with L = 4 does show a substantial decrease (about a seven unit decrease for an
assumed independent correlation model and about a six unit decrease for an assumed autoregressive
correlation model) in the PL objective function. While a decrease in objective function PL does
not constitute a formal hypothesis test of model improvement, we interpret this decrease in the
PL as empirical evidence that g3(·) and g4(·) offer a better summary of the residual variance
than g1(·).

6. SIMULATION STUDIES

In this section, we conduct several simulation studies to examine the small sample properties of
the lognormal MLE compared with the GEE approach under different response distributions. We
use two statistical models in our investigations: a multiplicative error model in (3) and an additive
error model:

Yi = �i (b)1ni + �R1/2i ei (16)

where �i (b) is the three-parameter Michaelis–Menten-like model (2), Ri =G1/2
i Ri (a)G

1/2
i with

g(�i j , Ai ,W) = �ϑ
i j , E(ei ) = 0 and E(eie′i ) = Ini . We begin our investigations with the multiplicative

lognormal model in (3).
We begin by simulating exposure Xi , i = 1, . . . ,me = 50, from a uniform(1, 100) distribution.

Then, in the case of lognormal data, we generate ni = 3 iid normal errors, �i1, �i2, �i3, and calculate
the outcome according to the model

logYi =
[
log{�i (b)} − �2

2

]
1ni + �R1/2

i (a)ei
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where ei = (�i1, �i2, �i3)′, Ri (a) = (r jk), r jk = 	| j−k| and � = {log(1+CV2)}1/2 for a user-defined
CV. In addition to lognormal outcomes, we also consider outcomes following model (16) with
normally and exponentially distributed errors. For exponential errors, one initially generates �†i j ∼
Exp(1) and then defines �i j = �†i j − 1. These new translated exponential errors will satisfy the
conditions of model (16) but will have non-zero skewness (�1 = 2) as opposed to normal errors
which have skewness coefficient equal to zero. For model (16), the CV for variance function g1(·)
is ��ϑ−1

i j . When ϑ = 1, we return to outcomes with constant CV, such as lognormal or gamma
distributed outcomes.

Remark
In order to apply the lognormal MLE to our simulated data from model (16), some care must
be taken to ensure that the normally distributed outcomes are positive random variables. Let
FY (t) =Pr(Yi j�t), then in model (16) we have

FY (0)=Pr

{
�i j� − �i j

�g(�i j , Ai ,Zi )

}
=Pr(�i j�− �−1�1−ϑ

i j ) = �(−�−1�1−ϑ
i j )

where the second-to-last equality follows from g(�i j , Ai ,Zi ) = g1(·) and the last equality
follows when the errors �i j are normally distributed. For ϑ = 1, if � is small enough, then few
if any observations in a Monte Carlo data set will have negative response (e.g. � = 0.3 implies
FY (0) = 0.00043). In practice, if a simulated response was negative, we set it equal to a small
positive number.

With no control subjects, �0 is weakly identified for modest sample sizes. Hence, we also
generate responses for mc = 25 subjects with ni = 1 replicate under the same conditional mean
model, which agrees with the design of the Chinese study. Adding the control subjects to our
simulation implies that we have a total of N = 175 observations from mc = 25 control and me = 50
exposed subjects.

Our simulation study results are summarized in Tables III and IV. These results include summary
statistics from a 3× 3 factorial design, that is, three estimators—the MLE, GEE with constant CV
(i.e. ϑ = 1 fixed) and GEE with variance function g1(·)—and three working correlation matrices,
Xi (a), for replicate outcomes within a subject—independence, exchangeable (
 jk = 	, j �= k)
and autoregressive (
 jk = 	| j−k|). For brevity and clarity, we only present results which show
meaningful differences between summary statistics. The Monte Carlo bias of parameter estimates
is presented in Table III. Here, we find that for lognormal data following the multiplicative
model (3), the Monte Carlo bias in the MLE is small when the CV is small. When the CV is
large, the MLE exhibits small sample bias. Interestingly, the sample size is sufficiently large for
GEE to obtain small bias in �̂1 and �̂2 regardless of the magnitude of CV in the multiplicative
lognormal model. However, the GEE estimates of �̂0 tend to be too small on average. For normally
distributed data following model (16), the lognormal MLE exhibits small bias even when the CV
is non-constant. When the outcomes are exponential, the MLE is biased while GEE still provides
consistent parameter estimates.

In Table IV, we report the Monte Carlo standard deviation of parameter estimates (SE) and the
average of SEEs. When the CV is constant, GEE produces results that are very similar, whether
or not a constant CV is assumed. The only simulations where we present both types of GEE
estimators is when the true CV is not constant. First, note that when the outcomes follow the
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Table III. Monte Carlo estimates of parameter bias in three-parameter Michaelis–Menten-like model.

�0 �1 �2

FY (·) CV Xi (a) MLE GEE MLE GEE MLE GEE

Ind 0.004 0.003 0.018 0.021 0.032 0.040
LN 0.3

AR1 −0.012 −0.015 0.014 0.017 0.023 0.030

Ind 0.038 −0.241 0.157 0.055 0.123 −0.024
LN 1.0

AR1 0.033 −0.235 0.126 0.023 0.096 −0.045

Ind 0.105 −0.004 0.038 0.014 0.033 0.025
N 0.3

AR1 0.103 −0.005 0.038 0.015 0.031 0.025

Ind −0.042 −0.003 0.013 0.006 0.017 0.014
N 0.3�−2/5

i j
AR1 −0.040 −0.003 0.014 0.007 0.016 0.014

Ind −1.872 0.172 0.481 0.031 −0.165 −0.017
E 2.5�−1/2

i j
AR1 −1.723 0.154 0.532 0.024 −0.147 −0.024

Note: Three different distributions for the errors, FY (·), are lognormal (LN), normal (N), and translated
exponential (E) with two different working correlation models: independence (Ind) and autoregressive with lag
one (AR1) for equally spaced intervals.

lognormal multiplicative model (3) with small CV, the variance in parameter estimates between
the MLE and GEE is about the same. However, for large CV, the lognormal MLE is more efficient
than GEE. For the constant CV model with normal errors, GEE standard errors are 25–33 per cent
smaller. Unfortunately, attempts to increase this constant CV model with normal errors are limited
by the increase in the probability of a negative response. When the CV is small but non-constant,
the difference between the standard estimates for MLE vis-a-vis GEE is dramatically reduced.
When the outcomes follow our exponential distribution, the lognormal MLE has small standard
error but is an inconsistent estimator for the truth (see Table III).

Next, we wish to compare the average of model-based standard error estimates (SEEsc) and
robust standard error estimates (SEEsd). Note that in our simulation study when the true CV is
non-constant and one assumes an uncorrelated working correlation model for replicate outcomes
within a subject, GEEb uses the correct variance function but incorrect correlation model while
GEEa is wrong on both counts. Hence, we can gain some insight into how well the robust standard
error estimates behave; not only when the correlation is misspecified, but also under the potentially
more severe problem of when the variance function and correlation structure are both misspecified.
For normal errors with CV= 0.3�−2/5

i j , using the robust SEEs in GEEa does seem to behave as
one would hope; that is, to increase the SEE from 0.17 to 0.21 (for �0) and thereby match the true
standard error very closely. We see an even more dramatic average increase from model-based to
robust standards, 0.67–1.03, when the errors are exponentially distributed but both the variance
function and correlation structure are misspecified. For �1 and �2, the robust error estimates still
appear to be too small, on average. However, in many simulation scenarios, the average robust
SEE with incorrect variance function is similar to the average robust SEE with correct variance
function.
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Table IV. Standard error estimates in simulation study of three-parameter Michaelis–Menten-like model.

�0 �1 �2

FY (·) CV Xi (a) Method SE SEE∗ SEE† SE SEE∗ SEE† SE SEE∗ SEE†

MLE 0.30 0.28 0.13 0.08 0.34 0.25
Ind

GEE‡ 0.31 0.29 0.29 0.13 0.09 0.11 0.35 0.25 0.32
LN 0.3

MLE 0.31 0.28 0.13 0.11 0.35 0.32
AR1

GEE‡ 0.31 0.29 0.28 0.13 0.11 0.11 0.35 0.31 0.31

MLE 0.87 0.81 0.56 0.46 1.20 0.99
Ind

GEE‡ 1.37 0.86 0.83 0.81 0.47 0.59 1.36 1.15 1.59
LN 1.0

MLE 0.87 0.82 0.46 0.45 1.08 1.12
AR1

GEE‡ 1.37 0.87 0.83 0.76 0.46 0.46 1.27 1.22 1.29

MLE 0.45 0.37 0.16 0.11 0.44 0.32
Ind GEE‡ 0.32 0.29 0.29 0.12 0.08 0.11 0.34 0.25 0.32

N 0.3
MLE 0.43 0.37 0.16 0.14 0.43 0.41

AR1
GEE‡ 0.32 0.29 0.29 0.12 0.11 0.11 0.34 0.32 0.32

MLE 0.24 0.18 0.07 0.05 0.21 0.15
Ind GEE‡ 0.23 0.17 0.21 0.07 0.05 0.06 0.20 0.15 0.19

GEE§ 0.23 0.21 0.21 0.07 0.05 0.06 0.20 0.15 0.19
N 0.3�−2/5

i j MLE 0.24 0.18 0.07 0.07 0.21 0.21
AR1 GEE‡ 0.23 0.17 0.21 0.07 0.06 0.06 0.20 0.18 0.19

GEE§ 0.23 0.21 0.21 0.07 0.05 0.06 0.20 0.17 0.19

MLE 0.92 0.56 0.30 0.22 0.82 0.64
Ind GEE‡ 1.16 0.67 1.03 0.41 0.22 0.26 1.01 0.70 0.87

GEE§ 1.16 1.02 1.06 0.37 0.21 0.28 0.91 0.65 0.84
E 2.5�−1/2

i j MLE 0.97 0.63 0.29 0.34 0.79 1.00
AR1 GEE‡ 1.15 0.71 1.04 0.41 0.32 0.26 0.96 0.93 0.84

GEE§ 1.11 1.00 1.05 0.34 0.27 0.26 0.87 0.82 0.80

∗Average of standard error estimates from V̂GLS.†Average of robust standard error estimates from V̂R.‡GEE with constant CV.
§GEE with ϑ unknown.
Note: True responses follow one of three different distributions, FY (·), lognormal (LN), normal (N), and
translated exponential (E) with autoregressive errors. Table entries are derived from 500 Monte Carlo data sets
using the lognormal MLE and GEE under two different assumed correlation structures for replicate outcomes
within a subject: independence and autoregressive with lag one.

7. DISCUSSION

In this article, we presented a nonlinear Michaelis–Menten-like regression model for relating chem-
ical exposure to a metabolism-related biomarker. We then applied this model to relate benzene
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exposure to benzene oxide adducts in a Chinese population. We use both parametric and semipara-
metric methods for drawing statistical inference in the setting where we have a general nonlinear
model with few repeated biomarker measurements. In the Chinese data, we find that a simple
conditional mean model (2) with variance function g3(·) fits well. The chosen variance function is
defined piecewise: constant for mean biomarker levels less than a limit L = 400 pmol/g and then
like a power-of-the mean for mean biomarker levels greater than L .

We conducted small sample studies to investigate two questions of interest: sensitivity of the
multiplicative lognormal MLE to model misspecification and sensitivity of the robust SEEs to
misspecifying the variance function g(·) and/or correlation model Xi (a). When the response
vectors follow the generalized nonlinear model in (16) with constant, small CV, or even mild
deviations from the constant CV model, we find the bias in the lognormal MLE to be small.
However, when the CV is not constant, parameter estimates may be severely biased. Our simulation
studies suggest that even when the multiplicative lognormal model is correct, the generalized
nonlinear model (16) will have better small sample properties when the CV is relatively large!
Thus, based on our investigations, even investigators who believe strongly that their data follow
the multiplicative lognormal model should consider the generalized nonlinear model (16) in small
samples. As for misspecifying variance and/or correlation models in nonlinear models via GEE,
we conclude that the robust SEEs occasionally correct for covariance misspecification in small
samples. Certainly, more technical work into the behaviour of the robust variance estimate is
needed.

In an earlier analysis of the Chinese data, Johnson et al. [30] used a nonlinear, mixed effects
model with a different conditional mean model �i (�). Our experience with exposure–biomarker
modelling suggests that the Michaelis–Menten-like model (2) is more suitable than the one proposed
earlier for population-based studies of a contaminant and its relationship to subsequent biomarkers.
Moreover, the parameter estimates from the Michaelis–Menten-like model have an approximate
physical interpretation of interest to environmental epidemiologists. The mixed model frame-
work allowed Johnson et al. to estimate subject-specific trajectories at low doses for 11 exposed
subjects with replicate biomarker outcomes. Here, we focus on estimating the population-averaged
exposure–biomarker relationship rather than on individual trajectories. Had multiple biomarkers
been collected over a range of benzene exposure levels, then several methods using nonlinear
mixed models would have been available. Given the nature and timing of the observed data, the
population-averaged approach seemed most appropriate without making strong assumptions about
the underlying data generating process. On the whole, we believe the data analysis in this paper is
a better summary of the exposure–biomarker relationship in the Chinese population, particularly
for subjects at low doses.

APPENDIX A: ADDITIONAL ALGEBRA FOR THE LOGNORMAL MLE

If log Y is normal with mean log � − �2/2 and variance �2, then the central moments are given by

�2 = �2(e�2 − 1)

�3 = �3(e�2 − 1)2(e�2 + 2)

�4 = �4(e�2 − 1)2(e4�
2 + 2e3�

2 + 3e2�
2 − 3)
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The coefficient of variation is given by

CV(lognormal) =
√
e�2 − 1

It then follows that the cumulants are given by �1 = �, �2 = �2, �3 = �3, and

�4 = �4(e�2 − 1)2(e4�
2 + 2e3�

2 + 3e2�
2 − 6)

In addition, the skewness and kurtosis (�4/�
2
2 − 3) are given by

�1 = (e�2−1)1/2(e�2 + 2)

�2 = (e4�
2 + 2e3�

2 + 3e2�
2 − 6)

A second-order Taylor-series expansion for var(logY ) where Y follows the above lognormal
distribution is given by the following expression:

var(logY ) = (e�2 − 1)[1 + 1
4 (e

�2 − 1)(e4�
2 + 2e3�

2 + 3e2�
2 + e�2 − 2)] (A1)
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