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Structured Measurement Error in Nutritional
Epidemiology: Applications in the Pregnancy,

Infection, and Nutrition (PIN) Study
Brent A. JOHNSON, Amy H. HERRING, Joseph G. IBRAHIM, and Anna Maria SIEGA-RIZ

Preterm birth, defined as delivery before 37 completed weeks’ gestation, is a leading cause of infant morbidity and mortality. Identifying
factors related to preterm delivery is an important goal of public health professionals who wish to identify etiologic pathways to target
for prevention. Validation studies are often conducted in nutritional epidemiology in order to study measurement error in instruments that
are generally less invasive or less expensive than “gold standard” instruments. Data from such studies are then used in adjusting estimates
based on the full study sample. However, measurement error in nutritional epidemiology has recently been shown to be complicated
by correlated error structures in the study-wide and validation instruments. Investigators of a study of preterm birth and dietary intake
designed a validation study to assess measurement error in a food frequency questionnaire (FFQ) administered during pregnancy and with
the secondary goal of assessing whether a single administration of the FFQ could be used to describe intake over the relatively short
pregnancy period, in which energy intake typically increases. Here, we describe a likelihood-based method via Markov chain Monte Carlo
to estimate the regression coefficients in a generalized linear model relating preterm birth to covariates, where one of the covariates is
measured with error and the multivariate measurement error model has correlated errors among contemporaneous instruments (i.e., FFQs,
24-hour recalls, and biomarkers). Because of constraints on the covariance parameters in our likelihood, identifiability for all the variance
and covariance parameters is not guaranteed, and, therefore, we derive the necessary and sufficient conditions to identify the variance and
covariance parameters under our measurement error model and assumptions. We investigate the sensitivity of our likelihood-based model to
distributional assumptions placed on the true folate intake by employing semiparametric Bayesian methods through the mixture of Dirichlet
process priors framework. We exemplify our methods in a recent prospective cohort study of risk factors for preterm birth. We use long-term
folate as our error-prone predictor of interest, the FFQ and 24-hour recall as two biased instruments, and the serum folate biomarker as the
unbiased instrument. We found that folate intake, as measured by the FFQ, led to a conservative estimate of the estimated odds ratio of
preterm birth (.76) when compared to the odds ratio estimate from our likelihood-based approach, which adjusts for the measurement error
(.63). We found that our parametric model led to similar conclusions to the semiparametric Bayesian model.

KEY WORDS: Adaptive rejection sampling; Dirichlet process prior; MCMC; Semiparametric Bayes.

1. INTRODUCTION

Measurement error is a common and well-known challenge
in nutritional epidemiology. One only has to glance at a re-
cent issue of any one of the leading epidemiological journals
to see this and to verify that there still are many unresolved
questions. One of the more intriguing recent developments in
nutritional epidemiology concerns the fitness and applicability
of traditional error models used to assess the validity and gen-
eralizability of estimated risks obtained from studies using the
food frequency questionnaire (FFQ).

Despite many documented pitfalls (Block 2001; Byers 2001;
Willett 2001), including systematic biases and within- and
between-subject variability, the FFQ is a common dietary in-
strument because of its ease of administration and economy in
large nutritional studies. Naive regression methods that use the
error-prone FFQ in place of the true long-term dietary intake
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often attenuate the regression coefficients toward 0 [although
the result is not true in general nonlinear models (Fuller 1987;
Carroll, Ruppert, and Stefanski 1995)]. Although several sta-
tistical methods have been proposed for the analysis of data
where covariates are measured with error, regression calibration
(Stefanski and Carroll 1985) seems to be the default method in
nutrition (Willett 1998). The method is popular because it may
be implemented using standard software assuming one has a re-
liable calibration model (Spiegelman, Carroll, and Kipnis 2001;
Spiegelman, Zhao, and Kim 2004). In addition, much money
and energy have been spent on validation studies over the past
several decades; therefore, bias and variance parameters relat-
ing the FFQ to the true, long-term dietary intake can be esti-
mated with some degree of precision. A related problem to the
one considered here is the error in covariate misclassification
(cf. Holcroft and Spiegelman 1999; Morrissey and Spiegelman
1999; Spiegelman et al. 2001; Zucker and Spiegelman 2004).

The traditional statistical analysis and inference proceeds by
first regressing the FFQ on the outcome to obtain a naive esti-
mate of the regression coefficient. Then we regress a reference
instrument—that is, an unbiased measure for the true dietary
intake—on the FFQ to estimate the attenuation factor. It can be
shown that dividing the naive estimated regression coefficient
by the estimated attenuation factor leads to a corrected estimate
of the desired regression coefficient, that is, one obtained if we
could have regressed the outcome on the true long-term dietary
intake (Carroll et al. 1995; Kipnis et al. 2001). If the system-
atic bias or the correlated errors in the FFQ or 24-hour recall is
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ignored, then the attenuation factor will be biased, and subse-
quently, the “corrected” regression coefficient estimate will no
longer be reliable. Although primary interest often lies in esti-
mating this true regression coefficient, epidemiologists are also
quite interested in the estimated attenuation factor. Because the
power of the study to detect a significant effect is a function of
the attenuation factor, epidemiologists use this fact to make post
hoc calculations to determine whether a null finding appears, in
fact, be to the case or whether it seems to be a result of low
power.

Our method uses models that allow for correlation in the er-
rors for contemporaneous instruments as suggested in the lit-
erature (Kaaks, Riboli, Esteve, Van Kappel, and Vab Staveren
1994; Kipnis et al. 2001, 2003). Our point and interval estima-
tion method is different from that considered in Kipnis et al.
(2001, 2003) in that we use a likelihood-based approach (also
called a structural measurement error model), whereas Kipnis
et al. (2001) estimated the attenuation coefficient first and then
appropriately scaled the naive regression coefficient estimate
to obtain the corrected coefficient estimate. Recently, Spiegel-
man et al. (2004) considered a joint model for all the parame-
ters in the disease (or outcome) model and the measurement
error model (as we do in Sec. 3) by “stacking” the estimating
equations for all the unknown parameters from both the disease
model and the calibration model and forming an M estimator
(cf. Stefanski and Boos 2002). Again, this regression calibra-
tion approach is different from our likelihood-based approach.
We subsequently extend our likelihood-based model through
the mixture of Dirichlet processes (MDP) methodology to avoid
placing strict parametric assumptions on the latent true dietary
intake variables. The remainder of this article is organized as
follows: Section 2 describes the Pregnancy, Infection, and Nu-
trition (PIN) study, from which the data are acquired, and sci-
entific questions of interest; Section 3 describes our statistical
model and notation; Section 4 gives an overview of the joint full
conditional distribution; Section 5 summarizes a small simula-
tion study; and Section 6 summarizes the results of our analy-
sis; we end with a short discussion on the implications of our
findings in Section 7.

2. THE PIN STUDY DATA

The PIN study was a prospective cohort study of risk fac-
tors for preterm birth (Savitz et al. 1999). Recruitment occurred
between 24 and 29 weeks’ gestation, and several question-
naires, including an FFQ to assess dietary intake in the sec-
ond trimester, were administered at this time as described in
Savitz et al. (1999; Siega-Riz et al. 2004). The outcome of in-
terest, preterm birth, was defined as delivery before 37 com-
pleted weeks of gestation. Siega-Riz et al. (2004) examined the
relationship between maternal folate status and preterm birth,
reporting increased risks of preterm birth among women with
mean daily folate intake less than 500 µg and among women
with serum folate levels less than 16.3 ng/mL. A variety of
folate exposure variables, including mean daily dietary intake
from the FFQ and two biomarkers, serum and red blood cell
folate, were used in separate analyses, with all results reported.

To address FFQ measurement issues, the investigators con-
ducted a validation substudy to determine whether dietary in-
take changed over the course of pregnancy and to quantify

measurement error in the FFQ. Women in the validation study
were enrolled in the first trimester and were asked to complete
three FFQs over the course of pregnancy, with each FFQ re-
flecting intake over the past trimester. The purpose of the longi-
tudinal component of the validation substudy was to determine
whether one FFQ measurement during the second trimester of
pregnancy would be sufficient to characterize intake through-
out pregnancy. In addition, three daily in-depth diet interviews
(also called “24-hour recalls”) were collected proximal to each
FFQ, providing a maximum of 12 measurements over three
time points. The replicate dietary records were collected in or-
der to help quantify measurement errors in each FFQ.

Finally, we make two additional points regarding the PIN
study data. First, one serum folate biomarker was collected on
every woman in the study, that is, both in the main study and
in the substudy. This feature of the PIN study is not common
among dietary studies, where a “typical” study collects bio-
markers only on women in the validation substudy. However,
we found that the additional biomarker information compen-
sated for a lack of information in the validation substudy (i.e.,
missing FFQs, 24-hour recalls, or biomarkers). Second, the
PIN study collected serum and red-blood cell folate biomark-
ers, which we use as our reference instruments in our analyses.
As pointed out by a referee, these biomarkers are measures of
folate concentration and not folate intake. Better measures of
the latter are replicate urinary nitrogen or doubly labeled wa-
ter measurements, neither of which were collected in the PIN
study. This important point does not change the validity of the
methods or analyses but does have a significant impact on the
interpretation of the analysis results and their generalizability
to other studies.

3. MODEL AND NOTATION

In this section we describe the proposed model and inference
used in many nutritional studies. The outcome is often modeled
in two stages, where the first stage models the response as a
function of predictors, both latent and observed, and the second
stage specifies a measurement error model for the error-prone
covariables. Let Yi, i = 1, . . . ,m, be an outcome of interest be-
longing to the exponential family of distributions (McCullagh
and Nelder 1983, p. 28). In the PIN study, Yi will be the bi-
nary outcome preterm birth, where Yi = 1 if a woman deliv-
ered preterm and 0 otherwise. Define Ti as a pT × 1 vector of
error-prone covariates assumed to be related to the outcome of
interest (e.g., Ti may refer to the true long-term dietary intake
of several nutrients of interest, or it may refer to a vector of true
dietary intakes for a single nutrient over different trimesters),
and Zi is a pZ × 1 vector of other covariates assumed to be “er-
ror free.” The outcome is related to the covariates through the
following model:

g{θi(η)} = η0 + η′
TTi + η′

ZZi, (1)

where g(·) is a known link function, EYi = θi(η), and η =
(η0,η

′
T ,η′

Z)′. The two primary instruments used in nutrition
studies are the FFQ and 24-hour recall, which we denote by
Qijl1, l1 = 1, . . . , kQ

ij , and Fijl2, l2 = 1, . . . , kF
ij , respectively. In

general, it will be convenient to let Qi denote the ki1 × 1 vec-
tor of all the FFQs for the ith subject, where ki1 = ∑

j kQ
ij , and,

similarly, let Fi be the ki2 × 1 vector of the 24-hour recalls,
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ki2 = ∑
j kF

ij . As discussed previously, evidence suggests the
following measurement error model (Kipnis et al. 2001, 2003;
Spiegelman et al. 2004) relating the observed instruments to the
true dietary intake, Ti:

Qijl1 = µQ + α
Q
j + βQTij + bi1 + UQ

ijl1
, (2)

Fijl2 = µF + αF
j + βFTij + bi2 + UF

ijl2, (3)

where µQ,µF are means for the FFQ and 24-hour recalls, re-
spectively, (α

Q
1 , . . . , α

Q
3 , αF

1 , . . . , αF
3 ) are trimester-level fixed

effects, (bi1,bi2) are mean-zero random effects describing
subject-specific biases, (βQ, βF) describe the systematic bias
of the instruments, and (UQ

ijl1
,UF

ij†l2
) is a bivariate perturbation

vector assumed to have mean 0, variance (σ 2
Q, σ 2

F), respectively,

and covariance ρjσQσF when j = j† and 0 otherwise. To iden-
tify trimester-level effects and systematic bias in the FFQ and
24-hour recall, it is necessary to have one instrument that is
unbiased for true dietary intake Ti. Let the serum folate bio-
marker Mijl3 , l3 = 1, . . . , kM

ij , which is obtained from a blood
draw taken close in time to the FFQ administration, be such an
instrument which is assumed to follow the model (Kipnis et al.
2001, 2003; Spiegelman et al. 2004)

Mijl3 = Tij + bi3 + UM
ijl3, (4)

where, again, bi3 is a mean-zero random effect and UM
ijl3

is an
independent, instrument-specific measurement error with vari-
ance σ 2

M . Again, recent research in nutritional epidemiology
(Kipnis et al. 2001) suggests that it may be prudent to consider
models where corr(UF

ijl2
,UM

ij†l3
) �= 0, j = j†, and similarly for

the FFQ. The resulting model is heavily parameterized, and the
identifiability of all parameters will only be satisfied with suffi-
ciently rich data, for example, replicate FFQs, 24-hour recalls,
and biomarkers in a validation substudy. Because such data may
not be observed in any one dataset, one must reduce the com-
plexity of the measurement error model (2)–(4) through sim-
plification or a priori knowledge of some parameters to identify
the remaining unknown parameters. In the following paragraph,
we discuss details of the PIN study data and its consequences
on our measurement error model; we compare our model to
one used in a recent analysis of the Medical Research Council
(MRC) study data (Kipnis et al. 2001).

In the PIN study, women had at most one FFQ per trimester
j (kQ

ij ≤ 1) and at most three 24-hour recalls (kF
ij ≤ 3) per

trimester. Only one biomarker was collected throughout the
study period. In contrast, the MRC study collected one FFQ
throughout their study period, but collected eight biomarkers
(two per season) and four 24-hour recalls (one per season).
For our analysis of the PIN data, we set and model a single
error-prone random variable Ti—that is, Tij = Ti, j = 1,2,3, in
(1)–(3)—and use the classical measurement error model for the
biomarker in (4):

Mi = Ti + Ui3, (5)

with σ 2
M assumed to be known. Because replicate biomarkers

are collected for every season of the MRC study, Kipnis et al.
(2001) did not need to simplify the error model in the biomarker
(4) as we have done for the PIN study. However, because only
one FFQ is observed in the MRC study, identifiability for all the

parameters in model (2) becomes problematic. For example, it
is not possible to identify var(bi1) and σ 2

Q separately from one
FFQ per subject without additional assumptions. Despite our
model simplifications, we use general notation following mod-
els (2)–(4) as our methods and subsequent analyses are germane
to other measurement error problems with similar data.

To write the likelihood for the observed data, it is convenient
to introduce some new notation and assumptions. Let Wi =
(Q′

i,F′
i,M′

i)
′ be the ki × 1 vector of all the instruments, where

Mi is a ki3 × 1 vector (ki3 = ∑
j kM

ij ) of unbiased reference in-
struments for the ith subject and ki = ki1 + ki2 + ki3. Here, we
also assume that the random-effect vector bi = (bi1,bi2,bi3)

is normally distributed with mean 0 and covariance matrix D
and the measurement error vector Ui = (UQ

i ,UF
i ,UM

i )′ is nor-
mally distributed with mean 0 and covariance matrix �. The
likelihood function of the observed data conditional on Zi is∏

i Li(Yi,Wi|Zi), where

Li(Yi,Wi|Zi)

=
∫

Li(Yi|Ti,Zi)Li(Wi|Ti,Zi)Li(Ti|Zi)dTi, (6)

Li(Ti|Zi) is the likelihood of the true dietary intake vector Ti

(e.g., Gaussian), Li(Wi|Ti,Zi) is the error distribution condi-
tional on Zi, and Li(Yi|Ti,Zi) is the probability density function
from the exponential family with the systematic and random
components and link function given in (1). We will assume that
Ui is independent of Zi and, therefore, replace Li(Wi|Ti,Zi)

with Li(Wi|Ti), which is a multivariate normal distribution de-
fined by the models in (2), (3), and (4). This assumption seems
tenable in many applications but would not be reasonable if,
for example, the mother’s height or weight were somehow re-
lated to the error in the instrument. If such an assumption
were unjustified, a more complicated error model could be in-
cluded without any additional difficulty. A detailed description
of Li(Wi|Ti) is given in the next section.

3.1 Measurement Error Model

We first consider a simplified version of the model in (6),
motivated by data from the PIN study described in Section 2.
For simplicity, let j = 1, . . . ,3 and Tij = Ti for all j. Conditional
on the random effects bi and true dietary folate intake Ti, we
have

( Qi

Fi

Mi

)

∼ Nki

{

Xi

(
µ

α

)

+ AiTi

(
β

1

)

+ Ribi,�i

}

,

where µ = (µQ,µF)′, α = (α
Q
1 , . . . , α

Q
3 , αF

1 , . . . , αF
3 )′, β =

(βQ, βF)′, and Xi, Ai, and Ri are fixed design matrices link-
ing the instruments/biomarkers to the calibration parameters
and random effects, respectively. To continue this illustration,
we make another common assumption and subsequent simpli-
fication in the measurement error model. In particular, one typ-
ically assumes that the measurement errors in the biomarkers
for the ith subject are independent of the measurement errors
in the FFQs and 24-hour recalls. This assumption seems ten-
able in the PIN data as the FFQs and 24-hour recalls are both
self-reported, whereas the biomarkers are laboratory measured
with no a priori knowledge of FFQ or 24-hour recall. If we
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partition �i into �11i, �12i, �21i, and �22i where �11i cor-
responds to the covariance matrix for the FFQs and 24-hour
recalls, �12i = �′

21i corresponds to the covariance between in-
struments and biomarkers, and �22i is the covariance matrix of
the biomarkers, then the conditional independence assumption
implies �12i = �T

21i = 0. From here, it is useful to treat the bio-
markers separately in the model as well as in the likelihood (6).
Now, we focus on the error calibration model for the FFQ and
24-hour recall only. Hence, we rewrite this portion of the model
as

(
Qi

Fi

)

∼ N(Hiγ + Ribi,�11i), (7)

where γ = (γ ′
Q,γ ′

F)′, γ r = (µr, αr
1, α

r
2, α

r
3, β

r)′ for r = Q,F,
where Q is short-hand for FFQ and F denotes 24-hour recall.
Because Hi is not full rank, it is necessary to constrain some
of the parameters to achieve estimability of γ . We constrain
the first trimester-level effect αr

1 = 0, r = Q,F, which implies
γ r = (γ r

1 , γ r
2 , γ r

3 , γ r
T)′ has the following interpretations: γ r

1 =
µr + αr

1, γ r
2 = αr

2 − αr
1, and γ r

3 = αr
3 − αr

1 for r = Q,F. For
consistency, we label γ r

T = βr . In (7), we also have that Hi is

block diagonal, that is, Hi = diag{HQ
i ,HF

i }, where

HQ
i = (

BQ
i

∣
∣1ki1

∣
∣Ti1ki1

)

and BQ
i = diag{1

kQ
i1
,1

kQ
i2
,1

kQ
i3
}. HF

i is defined similarly. With the

Qi and Fi organized as in (7), �11 (as a function of its parame-
ters) may be written as

�11i(σ ,ρ) = G1/2
i (σ )�i(ρ)G1/2

i (σ ), (8)

where σ = (σQ, σF)′, ρ = (ρ1, ρ2, ρ3)
′ for the three trimester

correlation parameters, Gi(σ ) = diag{σ 2
QIki1 , σ

2
FIki2} and �i(ρ)

is a symmetric ki × ki correlation matrix. Assuming a single
FFQ in each of three trimesters (i.e., kQ

i1 = kQ
i2 = kQ

i3 = 1) and

three 24-hour recalls at each of three trimesters (i.e., kQ
i1 = kQ

i2 =
kQ

i3 = 3), �i(ρ) is a correlation matrix with the following struc-
ture:

�i(ρ) =











I3

ρ11′
3 0 0

0 ρ21′
3 0

0 0 α31′
3

ρ113 0 0
0 ρ213 0
0 0 ρ313

I9











, (9)

where the 1r is a column vector of 1’s of length r and the 0’s
are vectors with the appropriate implied dimensions. Note that
if we have replicate FFQs and 24-hour recalls greater than or
equal to 2 at each time, then 1 (and analogously the 0’s) will no
longer refer to vectors, but matrices of 1’s (or 0’s). So far, we
have placed no restrictions on ρ. We discuss three correlation
models of interest and subsequent restrictions on �11i(σ ,ρ) in
Section 3.2.

3.2 Correlation Models and Their Implied Constraints

In this section we focus on three correlation models of inter-
est and derive the conditions on ρ that lead to the positive def-
initeness of �11i(σ ,ρ) and, therefore, ultimately lead to model
identifiability.

The three correlation models (CMs) of interest can be sum-
marized as follows: For every l1, l2,

CM1: corr
(
UQ

ijl1
,UF

ij†l2

) = 0 for every j, j†, (10)

CM2: corr
(
UQ

ijl1
,UF

ij†l2

) =
{

ρ if j = j†

0 otherwise,
(11)

CM3: corr
(
UQ

ijl1
,UF

ij†l2

) =
{

ρj if j = j†

0 otherwise,
(12)

for subject i at time j. In words, correlation model 1 (CM1) in
(10) assumes that measurement errors between FFQs and 24-
hour recalls are mutually independent, whereas CM2 and CM3
assume correlated errors. CM3 assumes measurement errors for
different instruments are correlated differently for each mea-
surement time, whereas CM2 assumes the correlation remains
the same over time. Both CM2 and CM3 are expected to reflect
better the errors in contemporaneous instruments observed in
nutritional epidemiological studies (Kipnis et al. 2001; Subar
et al. 2003; Carroll 2003; Carroll, Ruppert, Crainiceanu, Toste-
son, and Karagas 2004).

Now, we turn our attention to the positive definiteness of
�11i. By definition, �11i will be positive definite when the
quadratic form λ′�11iλ = 0 if and only if λ = 0. We use a corol-
lary that allows us to check the positivity of the determinants of
all the leading minors or, analogously, to check that the eigen-
values are all positive (Searle 1971).

Assuming that there are J measurement times and a constant
number of replicate FFQs and 24-hour recalls across trimesters,
nQ and nF , respectively, the general form of the determinant of
�11i is

|�11i| = σ
2JnF
F σ

2JnQ
Q

J∏

j=1

(1 − nQnFρ2
j ), (13)

and the unique eigenvalues of �11i are σ 2
Q, σ 2

F , and

1

2

{
σ 2

Q + σ 2
F ± (σ 4

Q + σ 4
F − 2σ 2

Qσ 2
F + 4nFnQρ2

j σ 2
Qσ 2

F)1/2}

for j = 1, . . . , J. It is straightforward to verify that the product
of the eigenvalues is indeed the determinant by including the
missing replicate eigenvalues, that is, J − 1 repeats of σ 2

Q and
σ 2

F . Now, through some straightforward algebra, it is easy to see
that the condition that will ensure the positivity of the eigenval-
ues is

|ρj| < (nFnQ)−1/2, j = 1, . . . , J. (14)

The condition in (14) is necessary and sufficient for the positive
definiteness of �11i. Furthermore, any prior distribution placed
on ρ must have support (14). Note that neither models (11) nor
(12) will be able to detect/estimate correlation parameters that
are extreme in either direction.

4. PRIOR AND POSTERIOR DISTRIBUTIONS

In this section we discuss the prior specification for all the
parameters in the preceding models and the resulting posterior
distributions to be used in a Gibbs (Geman and Geman 1984)
or Metropolis–Hastings (Metropolis and Ulam 1949; Metropo-
lis, Rosenbluth, Rosenbluth, Teller, and Teller 1953; Hastings
1970) sampling algorithm. For now, assume that T1, . . . ,Tm are
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independent and identically distributed random vectors from
the distribution FT with mean µT and variance �T . Define
Li(Yi|Ti,Zi;η) in (6) as the ith contribution to the condi-
tional likelihood given Ti arising from (1); for example, for a
Bernoulli response and a logit link function

log Li(Yi|Ti,Zi;η) = Yi(η0 + η′
TTi + η′

ZZi) + log{1 − θi(η)},
where θi(η) was defined in (1). For simplicity, we assume nor-
mal prior distributions on the mean parameters η, the sys-
tematic bias parameters γ in (7), and mean of the latent di-
etary intake random variables µT from Li(Ti|Zi) in (6), that
is, η ∼ N(η0,V0,η) in (1), γ ∼ N(γ 0,V0,γ ) in (7), and µT ∼
N(µT,0,V0,µT ) in Li(Ti|Zi), and conjugate Wishart priors on
D−1 in (7) and �−1

T in Li(Ti|Zi) in (6), D−1 ∼ Wq(νD,CD)

and �−1
T ∼ W(ν�T ,C�T ), respectively. Note that although it is

common to assume inverse Gamma priors for σ , this will not
necessarily imply a conjugate prior distribution because of the
correlation parameters ρ in �11i. Because our constraints on the
correlation parameters do not depend on σ , we may factor our
joint prior π(σ ,ρ) into the product π(σ )π(ρ). Because there
are typically more replicate FFQs and 24-hour recalls than bio-
markers, we assume flat priors for σ 2

Q and σ 2
F but an inverse

Gamma (IG) prior for σ 2
M . We define our prior on σ as

π(σ ) = σ−2
Q σ−2

F e−1/(bMσM)
/
σ

aM+1
M ,

where aM,bM are specified hyperparameters. For ρ, we spec-
ify a uniform prior with support given by the parameter con-
straints given in Section 3.2, that is, π(ρ) ∝ 1 with |ρj| <

(nFnQ)−1/2, j = 1, . . . , J. Finally, we also assume Ti is nor-
mally distributed with mean µT and covariance matrix �T .
Given π(σ ) and π(ρ), and prior variances V0,η , V0,γ , and
V0,µT , the joint posterior of the parameters is given by

p(η,γ ,b,T,σ ,ρ,D,µT ,�T |Y,W)

∝ |�W |−1/2|D−1|(νD+m−q−1)/2|�−1
T |(ν�T +m−pT−1)/2

× exp

[
m∑

i=1

{

log Li(η) − 1

2
(Wi − Hγ )′�−1

i (Wi − Hγ )

− 1

2
b′

iD
−1bi − 1

2
(Ti − µT)′�−1

T (Ti − µT)

}

− 1

2
(η − η0)

′V−1
0,η(η − η0) − 1

2
(γ − γ 0)

′V−1
0,γ (γ − γ 0)

− 1

2
(µT − µT,0)

′V−1
0,µT

(µT − µT,0)

− 1

2
tr(C−1

D D−1) − 1

2
tr
(
C−1

�T
�−1

T

)
]

π(σ )π(ρ), (15)

where �W = diag{�1, . . . ,�m}. Additional details for the full
conditional distributions are given in the Appendix.

4.1 Relaxing Distributional Assumptions on Ti

In measurement error problems, Ti is a latent random vector
with distribution FT . The Bayesian paradigm offers a conve-
nient method for handling latent variables and other incomplete
data problems by sampling the latent variable from its full con-
ditional distribution. When FT is parametric (e.g., Gaussian),

the full posterior is given by (15). However, this distributional
assumption is difficult to check and a more flexible model is of-
ten desirable. One method is to use a scale mixture of normals
for Ti. Toward this goal, suppose that we start with a univariate
Gaussian distribution with mean µT and variance σ 2

T . Then, we
may write

Ti = µT + εi,

where εi ∼ N(0, σ 2
T ). A straightforward extension of this model

is to assume εi ∼ N(0, λiσ
2
T ) where the λi are subject-specific

latent variables and assumed to have Gamma distributions.
A second method makes even fewer assumptions about the dis-
tribution function FT , requiring only that FT be a proper dis-
tribution function. We employ the mixture of Dirichlet process
(MDP) methodology based on a Polyá urn scheme (Antoniak
1974; Escobar 1994; MacEachern 1994). In addition to using
the Dirichlet process prior for parameters, the MDP methodol-
ogy has been successfully applied to other missing-data prob-
lems, such as random effects in mixed models (Kleinman
and Ibrahim 1998; Brown and Ibrahim 2003). Less work has
been done using the MDP prior in measurement error models.
Two exceptions are Mallick, Hoffman, and Carroll (2002) and
Müller and Roeder (1997), the latter of which describes an ap-
plication of the MDP prior methodology to case-control stud-
ies. There are at least two differences worth noting between our
application here and the one presented in Müller and Roeder
(1997). First, there is the fundamental difference in design be-
tween the retrospective and prospective study design, where the
case-control design has the additional complexity derived from
conditioning on the prevalence of cases in the sample, that is,
conditioning on

∑
i Yi = 1 (cf. Breslow and Day 1980). Second,

our two applications are different in that our model incorporates
multiple validation instruments with correlated errors. We ex-
pect that in a case-control study with multivariate instruments,
as in our application presented here, a combined model using
ideas presented here and in Müller and Roeder (1997) could be
applied. In the following discussion, we describe how to apply
the mixture of Dirichlet process methodology to our measure-
ment error problem.

Assume the random vectors Ti are drawn from an arbitrary
distribution FT , where FT has a Dirichlet process prior, de-
noted by FT ∼ DP(ξF0), F0 ∼ N(µT ,�T), and ξ is an unknown
scalar confidence parameter. Suppressing parameters other than
the error-prone covariate Ti, the full conditional distributions
for {Ti, i = 1, . . . ,m} are given by (see Kleinman and Ibrahim
1998)

[Ti|{Ti, k �= i},Yi,Wi]
∼ q0Li(Yi,Wi|Ti,Zi)f0(Ti|Zi) +

∑

k �=i

δ(dTi|Tk), (16)

where f0(Ti|Zi) ≡ Li(Ti|Zi), and Li(Yi,Wi|Ti,Zi) was defined
in (6). Recall that Li(Yi,Wi|Ti,Zi) factors into the product
Li(Yi|Ti,Zi)Li(Wi|Ti,Zi) by the nondifferential measurement
error assumption. Also, {q0,qk, k = 1, . . . ,m} are unnormal-
ized selection probabilities where

q0 ∝ ξ

∫

· · ·
∫

Li(Yi,Wi|Ti,Zi)f0(Ti|Zi) (17)
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and qk ∝ Li(Yi,Wi|T∗
k ,Zi) and T∗

k are the unique atoms of
f0(T|Z). Because (17) does not, in general, have a closed-form
solution, numerical integration is typically needed. However, it
would be possible to find a closed-form solution if, for example,
Li(Yi,Wi|Ti,Zi) and F0 were both multivariate normal. At the
next stage, we sample the unique vector T∗

j from its full con-
ditional distribution p(T∗

j |Dobs, rest), where Dobs denotes the
observed data, and rest is short hand for all remaining parame-
ters. For a fixed confidence parameter ξ , the full conditional
distribution of T∗

j is defined as

p(T∗
j |Dobs, rest)

∝ exp

[∑

i∈Sj

{

Yig(θi) + log(1 − θi)

− 1

2
(Wi − Hiγ − Ribi)

′�−1
i (Wi − Hiγ − Ribi)

}

− 1

2
(T∗

j − µT)′�−1
T (T∗

j − µT)

]

(18)

for Sj = {i|Ti = T∗
j }.

Define I∗ as the number of unique clusters of T∗, I∗ ≤ m.
Then, the confidence parameter ξ influences the tendency of the
Markov chain Monte Carlo (MCMC) algorithm to favor large
or small I∗, with ξ → ∞ implying large I∗. In this article, we
use initially a two-stage data augmentation algorithm to sample
ξ (Tanner and Wong 1987) and then conduct sensitivity studies
where ξ is fixed. Assume ξ has a Gamma prior with shape r
and rate λ, that is, ξ ∼ Gamma(r, λ) with Eξ = r/λ. At the first
stage, the augmentation algorithm samples a latent variable c
conditional on the current value of ξ and I∗, that is, [c|ξ, I∗] ∼
Beta(ξ + 1, I∗). Next, we sample the confidence parameter ξ

from the mixture of two Gamma distributions given the latent
variable c and I∗, that is,

[ξ |c, I∗] ∼ πcGamma
(
r + I∗, λ − log(c)

)

+ (1 − πc)Gamma
(
r + I∗ − 1, λ − log(c)

)
,

where πc = z/(z + 1) and z = (r + I∗ − 1)/[I∗{λ − log(c)}].
Some care is needed in choosing the prior parameters (r, λ) as
this strongly influences the tendency of the algorithm to favor
the base measure F0 or collapse on relatively few clusters. We
use two priors, Gamma(1,1) and Gamma(.01, .01), to check
the sensitivity of parameter estimates due to the choice of prior
on ξ . Both priors have mean 1, but the latter prior has variance
100 and, therefore, puts mass on both large and small values
of ξ .

5. SIMULATION STUDIES

Here, we present a small simulation study to provide some
empirical validity that the parameters in the complex measure-
ment error model (2)–(3) are estimable. The structure of our
simulation study mimics the PIN study data, and, hence, we use
the simplified biomarker model (5) with σ 2

M known. The details
of our simulation study follow.

We begin by simulating Ti as iid standard Gaussian random
variates, i = 1, . . . ,75, and independently generating subject-
specific biases bi from a bivariate Gaussian distribution with
mean 0 and covariance matrix D. Then, for each subject i and

Table 1. Summary of Posterior Means and Credible Sets Over
500 Monte Carlo Datasets

Parameter Truth Mean SD Coverage

γ Q
1 3.00 2.99 .18 .93

γ Q
2 −.75 −.75 .17 .95

γ Q
3 .75 .75 .17 .93

γ Q
T .50 .52 .19 .95

γ F
1 1.00 1.01 .21 .93

γ F
2 −.25 −.25 .09 .95

γ F
3 .25 .24 .10 .94

γ F
T .90 .94 .24 .91

D11 1.25 1.26 .29 .95
D12 .25 .24 .27 .94
D22 2.25 2.31 .48 .95
σ 2

Q 1.00 1.04 .12 .95
σ 2

F 1.00 1.01 .06 .94
ρ1 .00 .00 .07 .97
ρ2 .25 .24 .08 .94
ρ3 .00 .00 .06 .95

NOTE: Mean represents the Monte Carlo average posterior mean, SD represents the Monte
Carlo standard deviation of posterior means, and Coverage indicates the proportion of datasets
in which a 95% credible set includes the true value. γ are systematic bias parameters in the
measurement error model (MEM) and the remaining parameters are covariance parameters in
the MEM. For each dataset, we drew 2,000 samples from our joint posterior and treated the first
1,000 as burn-in.

visit j = 1,2,3, we generate a vector of instruments that satis-
fies the models:

Qij = γ
Q
1 + γ

Q
2 + γ

Q
3 + γ

Q
T Ti + bQ

i + UQ
ij ,

Fijl = γ F
1 + γ F

2 + γ F
3 + γ F

T Ti + bF
i + UF

ijl, l = 1,2,3,

where corr(UQ
ij ,UF

ijl) = ρj, l = 1,2,3, and ρ2 = .25 but ρ1 =
ρ3 = 0. Finally, we independently simulate one unbiased bio-
marker Mi as Gaussian with mean Ti and variance σ 2

M = .3.
The specific values for the remaining parameters are given in
Table 1.

In conclusion, we have not proven formally that the parame-
ters in our measurement error model (2)–(3) are identified. At
the same time, our simulation studies suggest that one can esti-
mate all parameters in our measurement error model and draw
correct inference from the posterior distribution using the cor-
rect likelihood specification and noninformative priors distrib-
utions.

6. ANALYSIS OF THE PIN STUDY DATA

For purposes of discussion, we split the data into two groups:
women who were included in a substudy and women not in
the substudy. In addition to the single FFQ, main study par-
ticipants also provided serum folate measures, which were in-
corporated into the measurement error model in the analysis.
Women in the substudy provided additional dietary informa-
tion that other women were not requested to give, ideally pro-
viding three FFQs and nine 24-hour recalls (1 FFQ and three
24-hour recalls per trimester for all three trimesters) during the
pregnancy. For convenience, we split the ith contribution to the
likelihood (6) into two pieces through the use of indicator func-
tions, I(·). Suppressing the parameters arising from Ti, we have

Li(Yi,Wi) = {Li,sub(Wi;γ ,D,σ ,ρ)}I(Si=1)

{Li,nsub(Yi,Wi;η, γ
Q
1 , σF)}I(Si=0),



Johnson et al.: Structured Measurement Error in Nutritional Epidemiology

JASA jasa v.2004/12/09 Prn:26/10/2006; 10:42 F:jasaap05194r.tex; (Diana) p. 7

7

1 60

2 61

3 62

4 63

5 64

6 65

7 66

8 67

9 68

10 69

11 70

12 71

13 72

14 73

15 74

16 75

17 76

18 77

19 78

20 79

21 80

22 81

23 82

24 83

25 84

26 85

27 86

28 87

29 88

30 89

31 90

32 91

33 92

34 93

35 94

36 95

37 96

38 97

39 98

40 99

41 100

42 101

43 102

44 103

45 104

46 105

47 106

48 107

49 108

50 109

51 110

52 111

53 112

54 113

55 114

56 115

57 116

58 117

59 118

where Si equals 1 if the ith women belongs to the substudy and
0 otherwise. Therefore, the posteriors for γ and σ will have dif-
ferent contributions from women in the substudy versus those
not in the substudy. Of course, the posterior for Ti depends on
substudy status as well as each step in the MDP implementa-
tion.

Our analysis uses 172 women from the substudy who had
at least one of the nine 24-hour recalls and 1,679 women in
the main study. Due to the rigorous protocol of the substudy,
women did not provide all 12 dietary measures. The 1,679
women in the main study were chosen to have complete data for
preterm birth, the three “error-free” covariables in the outcome
model—height, body mass index (BMI), and dietary caloric in-
take (also called “energy” in our analyses below) as measured
in the FFQ—and serum folate. The overall preterm birth rate
in the combined data was 12.7% (236/1,851). Two covariables,
BMI and dietary caloric intake, were transformed using the nat-
ural logarithm. All three covariables were standardized by their
sample means and standard deviations (2.6, .24, .47, respec-
tively) and all are assumed to be error free. With additional in-
formation on the variability in the measurements in these vari-
ables, it would be possible to relax this assumption as well. This
investigation is, however, beyond the scope of this article and
beyond the data available to the authors. The sample variance
of the unbiased serum folate biomarker is .40.

Although nonsubstudy women were chosen to have complete
data, the same criterion was not used to select women in the
substudy because of frequent nonresponse. As shown in Ta-
ble 2, although many women provided one 24-hour recall at
each trimester (82%, 73%, and 67% at visits 1, 2, and 3, re-
spectively), fewer provided all three 24-hour recalls for any
given trimester because of the rigorous protocol. Rather than re-
move these missing observations, we assumed the missing val-
ues were missing at random, then used our model and MCMC
methods to sample the missing values (cf. Little and Rubin 2002
for a review of Gibbs sampling for missing-data problems).
A similar strategy was employed for missing biomarkers (only
25 biomarkers were observed from the 172 substudy women).

We summarize the mean parameters from the outcome model
(η) and the systematic bias parameters (γ ) in Table 3 and vari-
ance parameters (σ 2

Q, σ 2
F , D, ρj) in Table 4. In Table 3 we in-

clude one column of “naive” parameter estimates, which are

Table 2. Sample Mean and Standard Deviation for Two Biased
Measures of Folate Intake—Dietary Folate (FFQ) and 24-Hour

Recall—From 172 Women in the PIN Substudy

Instrument Trimester Rep N Mean SD

FFQ 1 1 97 5.92 .46
2 1 134 6.00 .35
3 1 72 6.00 .42

24-hour recall 1 1 141 5.62 .62
1 2 104 5.61 .68
1 3 16 5.18 .43
2 1 125 5.72 .55
2 2 95 5.84 .48
2 3 5 5.55 .58
3 1 116 5.87 .56
3 2 87 5.91 .51
3 3 2 6.14 .22

NOTE: Both FFQ and 24-hour recall measurements are reported on the log-scale with the 24-
hour recall attempted three times per trimester and FFQ attempted once per trimester.

Table 3. Analysis Results From the PIN Study Making Parametric
Assumptions About True Folate and a Common Correlation

Parameter Among Contemporaneous Instruments

Parameter Naive Normal MDP (ξ = .83)

Intercept (η0) −1.95(.08) −1.99(.08) −1.99(.08)
Folate (ηT ) −.27(.11) −.46(.15) −.48(.14)
Height (ηZ1 ) −.07(.03) −.08(.03) −.08(.03)
BMI (ηZ2 ) .68(.30) .65(.31) .63(.31)
Energy (ηZ3 ) −.01(.15) −.01(.16) −.01(.15)

γ Q
1 5.90(.16) 5.97(.02) 5.97(.02)

γ Q
2 .18(.19) .11(.07) .10(.07)

γ Q
3 .20(.23) −.34(.08) −.35(.08)

γ Q
T −.13(.13) .13(.03) .13(.03)

γ F
1 5.27(.09) 5.31(.07) 5.34(.06)

γ F
2 .25(.12) .31(.09) .31(.09)

γ F
3 .59(.13) .56(.09) .55(.09)

γ F
T −.01(.08) −.02(.05) −.02(.04)

NOTE: The “naive” analysis refers to two independent, complete-case analyses that replace the
true folate random variable with the serum folate biomarker. γ refers to systematic parameters
in the measurement error model. Posterior means from 6,000 Gibbs samples with the first 4,500
treated as burn-in are reported with standard deviations reported in parentheses.

calculated by fitting two independent regression models with
complete data: first, the logistic regression model in (1) with
the true folate intake replaced by the serum folate biomarker
to obtain η̂naive, and second, the linear regression of substudy
FFQs and 24-hour recalls on serum folate biomarkers assuming
model (2)–(3) under CM1 (ρj = 0) and no subject-specific bi-
ases (D = 0). In Table 3 we summarize the parameter estimates
under CM1 for folate intake following a normal distribution and
also our MDP model with ξ = .83, reflecting little confidence in
the normality assumption. Interestingly, the protective folate ef-
fect from the naive analysis appears even stronger after adjust-
ing for measurement error. Also, there appears to be an inverse
intra-individual relationship between the FFQ and 24-hour re-
call (D12 = −.22), which suggests that women who respond
conservatively on the FFQ tend to respond liberally on the 24-
hour recall and vice versa. In the validation study, there is some
evidence that folate consumption, as measured by the 24-hour
recalls, increases throughout pregnancy, though there appears to
be no monotone increase when evaluating folate consumption
as measured by the FFQ. Though the cost may be prohibitive,
future validation studies in pregnancy might consider including
serial biomarkers to help determine whether there are substan-
tial pregnancy-related dietary changes throughout the 9-month

Table 4. Summary of Variance Component Estimates (with posterior
standard deviations in parentheses) From MCMC Analyses Results

From the PIN Study Using Normal Prior Distribution on
True Folate Concentration

Parameter CM1∗ CM2 CM3

D11 .54(.09) .51(.09) .46(.08)
D12 −.21(.03) −.23(.04) −.24(.05)
D22 .08(.01) .10(.02) .13(.03)

σ 2
Q .43(.02) .43(.02) .43(.02)

σ 2
F 1.19(.05) 1.19(.05) 1.18(.05)

ρ1 0∗ −.02(.02) −.11(.04)
ρ2 0∗ −.02(.02) .03(.05)
ρ3 0∗ −.02(.02) .02(.04)

NOTE: Correlation models (CM1–CM3) refer to different assumptions about the correlation
among errors of contemporaneous instruments and are described in Section 3.

∗Model 1 sets ρj = 0, j = 1, 2, 3.
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Table 5. Model Comparison Using Deviance Information Criterion

Model ∆̄ pδ ∆∗ DIC

CM1 + {D = 0} 8,841.5 2,893.3 5,948.2 11,734.8
CM1 8,836.9 3,053.2 5,783.7 11,890.1
CM2 8,834.0 3,052.2 5,781.9 11,886.3
CM3 8,836.6 3,055.1 5,781.5 11,891.7

{D = 0} implies D11 = D12 = D22 = 0, which implies no subject-specific biases (no heterogeneity)
in the FFQ or 24-hour recall. �̄ is the posterior mean of minus twice the log-likelihood, pδ is the
effective number of parameters, �∗ is minus twice the log-likelihood evaluated at the posterior
means of the parameters, and DIC= �̄ + pδ .

period that would necessitate serial dietary assessments in stud-
ies of nutrition during pregnancy. In addition to the parameters
in Table 3, we also estimated the odds ratio for an “IQR in-
crease” in folate, that is, an increase from the 25th percentile to
the 75th percentile of the folate sample distribution. Hence, we
estimated a 27% reduction in the odds [odds ratio (OR) = .73,
(.59–.91)] of preterm birth for an IQR increase in latent folate
given BMI, mother’s height, and energy level. Mother’s height
and BMI are important predictors of preterm birth both before
and after adjusting for measurement error in the folate variable.

The proposed measurement error model (2)–(4) is parame-
terized richly, and our analyses did not find substantial dif-
ferences among parameter estimates in models of increasing
complexity. Hence, it may be preferable to select the most
parsimonious model and eliminate unnecessary complexity in
the measurement error model. To facilitate model comparisons,
we use the deviance information criterion (DIC; Spiegelhalter,
Best, Carlin and van der Linde 2002) and compare the corre-
lation models (CM1–CM3) in addition to one simpler model
“CM1 + {D = 0},” which allows for no subject-specific biases
in the FFQ or 24-hour recall. Our results are displayed in Ta-
ble 5 using the following additional notation: �̄ is the posterior
mean of minus twice the log-likelihood, pδ is the effective num-
ber of parameters, �∗ is minus twice the log likelihood evalu-
ated at the posterior means of all parameters, and DIC = �̄+pδ .
We immediately notice that pδ is strikingly large, again empha-
sizing the large number of unknown variables in our model.
Recall, that each latent folate variable Ti is regarded as an un-
known variable in addition to all missing FFQs, 24-hour recalls,
and biomarkers in the validation substudy. Our model compari-
son suggests that a model with no correlation among contempo-
raneous measurements and no subject-specific biases is the best
model. The effective number of parameters in this simple model
is approximately 160 parameters fewer than model CM1 due to
the latent subject-specific biases b1i, b2i, which are absent when
D = 0. However, when we believe that D �= 0 and only focus
on CM1–CM3, we find that CM2 is the best model among the
three, which suggests that a model that considers nonzero cor-
relations among contemporaneous instruments is useful.

In Tables 3 and 4 we presented parameter estimates that
we claim are relatively insensitive to the confidence parame-
ter ξ . To investigate further this claim, we ran more than 60
MDP analyses of the PIN study data with confidence parame-
ters ranging from .01 to 10,000. We found that posterior means
and standard deviations from an MDP analysis using confi-
dence parameters greater than 50 did not change significantly.
In Figure 1 we plot the number of unique clusters of T , that
is, I∗, and the posterior means of five folate-related parameters

as a function of the confidence parameter ξ and then fit a cu-
bic spline to the points to illustrate the average trend. So, our
empirical findings suggest that the parameter estimates do not
change significantly once the number of unique clusters of T
gets beyond 120 or so, on average, as we see in Figure 1(a). In
Figures 1(b)–1(f), we graph the posterior means of five para-
meters most significantly impacted by choosing ξ sufficiently
small. We note that all five parameters tend to decrease as ξ

approaches 0. For example, the posterior mean of ηT is approx-
imately −.48 when ξ small but −.46 for large ξ , the latter of
which corresponds to the normality assumption in Table 3. At
the same time, we emphasize a word of caution when draw-
ing conclusions from these figures as the variability in posterior
means cannot be ignored, particularly for small ξ . Moreover,
the average change in posterior means from ξ ≈ .05 to ξ ≈ 50
may be extremely small, for example, less than .01 for γ

Q
T and

less than .005 for γ F
T .

7. DISCUSSION

We have presented a Bayesian semiparametric method to es-
timate parameters from a generalized linear measurement er-
ror model with a structured measurement error model and ap-
plied the method to an analysis of the PIN data. Our first
method assumes that true long-term folate is normally distrib-
uted, whereas the second method using the mixture of Dirichlet
process priors framework does not. We found that results based
on a naive model that replaces true long-term folate by the ob-
served serum folate to be somewhat conservative when com-
pared to results based on our calibrated analysis. Furthermore,
the results presented in Tables 3 and 4 appeared to be insensitive
to the normality assumption on folate intake when compared to
those from the MDP analysis for modest values of ξ .

In general, there has been mixed evidence in the literature
about whether the instruments under- or overestimate intake. In
the past, FFQs have been shown both to underestimate intake
with respect to food records (Brown et al. 1996) and to over-
estimate intake relative to food records (Suitor, Gardner, and
Willet 1989; Greeley, Storbakken, and Magel 1992; Forsythe
and Gage 1987; Robinson, Godfrey, Osmond, Cox, and Barker
1996; Erkkola et al. 2001). The PIN raw data show some ev-
idence of underestimation of dietary intake in FFQ versus 24-
hour recall in the second and third trimesters, but this was not
significant using tests of means. Food records themselves tend
to underestimate dietary intake compared to the true gold stan-
dard, doubly labeled water (Goldberg et al. 1993), under certain
weight-stable conditions. As one anonymous referee pointed
out, even doubly labeled water may have additional measure-
ment error with it, although we expect the error associated with
it to be much smaller than the error associated with either FFQ
or 24-hour recall.

The PIN study data are unique among nutritional epidemi-
ology studies of dietary intake for many reasons, one of which
is the collection of an FFQ and a biomarker in the main study.
Typically, a study will collect the FFQ in the main study and
then conduct a validation substudy to determine the relation-
ship between the FFQ and the biomarker. As suggested by an
anonymous referee, it would be interesting to see how our an-
alytic results changed once we removed the biomarker in the
main study. We conducted these analyses, including the model
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Figure 1. Effect of Confidence Parameter ξ on Latent Folate Concentration Parameters in MDP Analysis of PIN Study Data. I∗ is the number of
unique values of T; µT and σ T are the mean and standard deviation of T, respectively; ηT is the folate effect on preterm birth; γ Q

T and γ F
T are the

systematic biases in the FFQ and 24-hour recall, respectively.

comparison in Table 5, and found that our results are sensitive
to the removal of these data. First, the measurement error model
is too complex for the observed validation data in the PIN sub-
study. In addition to removing the correlation parameters (ρj)
and subject-specific biases (i.e., D = 0), a substantial simplifi-
cation of the trimester-level means (αQ

j , αF
j ) in (2)–(3) would

be necessary. Second, the estimated FFQ–biomarker associa-
tion using only the PIN substudy is too weak, and, hence, after
removing the biomarker in the main study, the posterior means
of η in the outcome model (1) look more like the “naive” es-
timates than calibrated or corrected estimates. Thus, the para-
meter estimates presented earlier do require the biomarker in
the main study in an analysis of the PIN study data. In general,
however, we conjecture that all parameters in the measurement
error model (2)–(4) are estimable given sufficient data in the
validation substudy. Therefore, our models and methods are not
limited to studies that collect biomarkers in the main study.

Our analysis used serum folate biomarkers as unbiased mea-
sures of folate concentration. For the PIN study data, serum bio-
markers were analyzed in one of four batches with over 80%
of the sample analyzed in the first batch (specifically, the sam-
ple proportions were approximately .87, .05, .06, and .02, for
batches 1–4, respectively). Siega-Riz et al. (2004) found that
batch differences were nonnegligible and should be included
in analyses using the serum biomarkers. Our analyses used the
first batch as the reference group and placed vague, normal prior
distributions on the remaining three batch effects. This addi-
tional caveat adds nothing new to the overall measurement error
model (2)–(4) and was easily incorporated into our Bayesian
framework in Section 4. Finally, while the serum folate bio-
marker is believed to be free from systematic biases, it is not
without drawbacks, which involve individual-specific factors
such as personal rates of metabolism. In an ideal experiment,
one would use an objective biomarker, such as doubly labeled
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water, rather than serum folate. Doubly labeled water is a mea-
sure of energy expenditure and intake (under certain weight-
stable conditions) and is often regarded among the “best” bio-
markers; however, it is not a true biomarker for any particular
nutrient.

APPENDIX: FULL CONDITIONAL DISTRIBUTIONS

Let Dobs denote the observed data and let rest be short hand for
all remaining parameters. Recall that Yi is a Bernoulli outcome with
canonical link function so that

log Li(Yi|Ti,Zi;η) = Yi(η0 + η′
T Ti + η′

ZZi) + log{1 − θi(η)},
where θ(u) = 1/(1 + e−u).

1. Sample [η|rest,Dobs] from p(η|rest,Dobs) using adaptive rejec-
tion sampling (Gilks and Wild 1992), where

p(η|rest,Dobs)

∝ exp

{ m∑

i=1

log Li(η) − 1

2
(η − η0)′V−1

0,η(η − η0)

}

.

2. Sample [γ |rest,Dobs] from N{
γ γ̂ + (I − 
γ )γ 0,
γ (H′ ×
H)−1}, where �γ = (H′H + V0,γ )−1H′H and γ̂ = (H′H)−1 ×
H′(W − Rb).

3. Let b = (b1, . . . ,bm)′. Sample [b|rest,Dobs] from N(
bb̂,

�−1
W 
b(R′R)−1), where 
b = (R′R + Im ⊗ D−1)−1R′R, ⊗

is the Kronecker product, and b̂ = (R′R)−1R′(W − Hγ ).

4. Sample [D−1|rest,Dobs] ∼ Wq(m + νD,C−1
D + (

∑m
i=1 bi ×

b′
i)

−1).
5. Sample (σ ,ρ) from p(σ ,ρ|rest,Dobs), where

p(σ ,ρ|rest,Dobs)

∝ |�W |−1/2

× exp

{

−1

2
(W − Hγ − Rb)′�−1

W (W − Hγ − Rb)

}

× π(σ )π(ρ).

6. Sample the error-prone covariate [Ti|rest,Dobs] from p(Ti|rest,
Dobs) for i = 1, . . . ,m, where

p(Ti|rest,Dobs)

= exp

{

log Li(η)

− 1

2
(Wi − Hiγ − Ribi)

′�−1
Wi

(Wi − Hiγ − Ribi)

− 1

2
(Ti − µT )′�−1

T (Ti − µT )

}

.

7. Sample the missing FFQs and 24-hour recalls in the substudy
assuming the observations are missing at random, leading to
[Wmiss

i |rest,Dobs] ∼ N(Hiγ + Ribi,�Wi).

8. Sample the missing biomarkers from [Mmiss
i |rest,Dobs] ∼

N(Ti + bi3, σ 2
M), assuming missing observations are missing at

random.
9. Sample [µT |rest,Dobs] ∼ N(
T T̄ + (I − 
T )µ0,T ,m−1 ×


T�T ), where 
T = V0,T (m−1�T + V0,T )−1 where T̄ =
m−1 ∑m

i=1 Ti.
10. Sample [�T |rest,Dobs] ∼ WpT (m + ν�T ,C�T + (

∑m
i=1 Ti ×

T′
i)

−1).

For the MDP implementation, substitute all of Section 4.1 for
step 6.

[Received April 2005. Revised January 2006.]
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