Hidden Markov Model I
Motivating Example

- Assume there are two types of weather “Sunny” and “Rainy”. We assume, a prior, that the probabilities of two types of days are 0.7 and 0.3, e.g., $Pr(Sunny) = 0.7$, $Pr(Rainy) = 0.3$.

- Every morning, you do two things: walk our dog (“W”) or reading (“R”). Assume the following conditional probabilities:

 \[Pr(W|Sunny) = 0.8, \quad Pr(R|Sunny) = 0.2. \]
 \[Pr(W|Rainy) = 0.2, \quad Pr(R|Rainy) = 0.8. \]

- Assume we know your morning activity for a number of days: \{W, W, R, R, W, W, R, W, W, W\}. How can we estimate the weather condition for each day?
Motivating Example (cont.)

- Using Bayes’ rule, one can do for each day:

\[
Pr(Sunny|W) = \frac{Pr(W|Sunny)Pr(Sunny)}{Pr(W|Sunny)Pr(Sunny) + Pr(W|Rainy)Pr(Rainy)}
\]

\[
= \frac{0.8 \times 0.7}{0.8 \times 0.7 + 0.2 \times 0.3} = 0.9
\]

\[
Pr(Sunny|R) = \ldots\ldots
\]

- However, this assumes independence of observations and completely ignores the connections between weather changes, e.g., probability of today is Sunny given yesterday is Sunny, etc.

- With the consideration of those, today’s weather \(Pr(Sunny|W) \) should also depend on yesterday’s weather, in addition to the W/R status.

- Such an approach can be formalized by a “hidden Markov model” (HMM).
• Assume we observe sequential data $u = \{u_1, u_2, \ldots, u_T\}$ (your morning activities).

• u is generated by a hidden, unobserved state: $s = \{s_1, s_2, \ldots, s_T\}$.

• Each s_t can take M states, with “initial probability” $\pi_k, k = 1, \ldots, M$:

 \[Pr(s_1 = k) = \pi_k, \sum_k \pi_k = 1. \]

• The distribution of u conditional on s is specified by a distribution $b_k(u)$:

 \[u_t | s_t = k \sim b_k(u_t). \]
 This is called “emission probability”.

• The changes of states between consecutive hidden state is specified by “transition probability”:

 \[a_{k,l} = Pr(s_{t+1} = l | s_t = k). \]
 Or you can write this as $a_{k \rightarrow l}$.

• Assume the underlying states follow a Markov chain, that is, given present, the future is independent of the past:

 \[Pr(s_{t+1} | s_t, s_{t-1}, \ldots, s_1) = Pr(s_{t+1} | s_t). \]

To summarize: Observed data: u. Missing data: s. Parameters: $\lambda = \{\pi_k, b_k(u), a_{k,l}\}$.
• The possible states are included in a finite discrete set: \(\{E_1, E_2, \ldots, E_M\} \).

• From time \(t \) to \(t + 1 \), make stochastic movement from one state to another.

• Markov Property: the state of \(s_{t+1} \) only depends on the state of \(s_t \), not the states before time \(t \):
 \[
 \Pr(s_{t+1}|s_t, s_{t-1}, \ldots, s_1) = \Pr(s_{t+1}|s_t).
 \]

• Time-homogeneous transition probabilities property: \(P(s_{t+1}|s_t) \) independent of \(t \).

• Denote the transition probability matrix by \(A \). Define N step transition as:
 \[a_{k,l}(N) = \Pr(s_{t+N} = l|s_t = k). \] It can be shown that \(A(N) = A^N \).
A HMM can answer following questions:

- Parameter estimation: estimate the initial/emission/transition probabilities.
 \[\hat{\lambda} = \text{argmax}_\lambda Pr(u|\lambda). \]

- What are the probabilities of the underlying states, given the observations:
 \[Pr(s|u). \]

- The most likely path: given the observed data, what are the most likely underlying states for all observations:
 \[\hat{s} = \text{argmax}_s Pr(s|\lambda, u). \]

- Predict future, e.g., \[Pr(u_{t+1}|u, \hat{\lambda}). \]

Examples of HMM applications:

- Speech recognition.
- DNA sequence analysis, e.g., gene finding, sequence alignment.
- Financial time series data.
There’s close connection between a HMM and a mixture model: both have hidden states/group assignment, initial and emission probabilities.

Difference is that mixture model assumes independent observations, HMM assumes sequential observation with transition probability.
According to Markov property, we have:

- Joint probability of hidden states:

 \[
P(s_1, s_2, \ldots, s_T) = P(s_1)P(s_2|s_1) \cdots P(s_T|s_{T-1})
 = \pi_{s_1}a_{s_1,s_2} \cdots a_{s_{T-1},s_T}
 \]

- Conditional on the states, the observations are independent of each other:

 \[
P(u_i, u_j|s) = P(u_i|s)P(u_j|s)
 \]

So the joint probability of observations, given hidden states is:

\[
P(u|s) = \prod_{i=1}^{T} P(u_i|s_i) = \prod_{i=1}^{T} b_{s_i}(u_i)
\]
Some results for a HMM (cont.)

- Joint probability of hidden states and observed data

\[
P(u, s) = P(s)P(u|s)
= \pi_s b_s(u_1)a_{s_1,s_2}b_{s_2}(u_2)a_{s_2,s_3} \ldots a_{s_{T-1},s_T}b_{s_T}(u_T)
\]

- Marginal probability of observed data:

\[
P(u) = \sum_s P(s)P(u|s)
= \sum_s \pi_s b_s(u_1)a_{s_1,s_2}b_{s_2}(u_2)a_{s_2,s_3} \ldots a_{s_{T-1},s_T}b_{s_T}(u_T)
\]
• First need to make parametric assumption of the emission probabilities $b_k(u)$.
• A common assumption is that $b_k(u)$ is Normal, e.g., $b_k(u) = N(u : \mu_k, \sigma_k^2)$.
• Then the model parameters to be estimated are:

$$\lambda = \{\pi_k, \mu_k, \sigma_k, a_{k,l} : k, l = 1, \ldots, M\}$$

• One can obtain the MLEs for λ from the marginal probability of observed data. However it’s very difficult because the marginal probability involves summing over all possible paths (\sum_s).
• Clever algorithm was invented to solve the problem.
• Define \(L_k(t) \) be the conditional probability of being in state \(k \) at position \(t \) given the observed data \(u \):

\[
L_k(t) = P(s_t = k|u)
\]

• Define \(H_{k,l}(t) \) be the conditional probability of being in state \(k \) at position \(t \) and being in state \(l \) at position \(t + 1 \) (i.e., seeing a transition from \(k \) to \(l \) at \(t \)), given the observed data \(u \):

\[
H_{k,l}(t) = P(s_t = k, s_{t+1} = l|u)
\]

• Note that \(L_k(t) = \sum_{l=1}^{M} H_{k,l}(t), \sum_{l=1}^{M} L_k(t) = 1 \).
• Then the parameters can be estimated by EM:

 – E-step: Compute $L_k(t)$ and $H_{k,l}(t)$ given current parameters.

 – M-step: update parameters:

$$
\mu_k = \frac{\sum_{t=1}^{T} L_k(t)u_t}{\sum_{t=1}^{T} L_k(t)}
$$

$$
\sigma_k^2 = \frac{\sum_{t=1}^{T} L_k(t)(u_t - \mu_k)^2}{\sum_{t=1}^{T} L_k(t)}
$$

$$
a_{k,l} = \frac{\sum_{t=1}^{T-1} H_{k,l}(t)}{\sum_{t=1}^{T-1} L_k(t)}
$$

$$
\pi_k = \frac{\sum_{t=1}^{T} L_k(t)}{T}
$$

• Derivation steps are similar to that in M-component normal mixture model (try it yourself). The new items are the transition probabilities.
In the M-step to update Normal distribution parameters, $L_k(t)$ plays the same role as the posterior probability (expected value) of a component (state) given the observation, i.e., $p_{t,k} = P(s_t = k|u_t)$.

In comparison, $L_k(t) = P(s_t = k|u_1, u_2, \ldots, u_T)$.

If one ignores the connections among observations, e.g., s_t’s are independent and thus u_t’s are iid, then $L_k(t) = p_{t,k}$, and HMM reduce to a M-component Normal mixture model.

In a mixture model, s_t only depends on u_t because observations are independent.

In a HMM, s_t depends on the entire sequence of observations because of the underlying Markov process.
The forward-backward algorithm is designed to efficiently compute:

\[L_k(t) = P(s_t = k|\mathbf{u}) \]
\[H_{k,l}(t) = P(s_t = k, s_{t+1} = l|\mathbf{u}) \]

- Define the **forward probability** \(\alpha_k(t) \) as the **joint probability** of observing the first \(t \) data \(u_i, i = 1, \ldots, t \) and being in state \(k \) at time \(t \):

\[\alpha_k(t) = P(u_1, u_2, \ldots, u_t, s_t = k) \]

- The forward probability can be computed recursively:

\[\alpha_k(1) = \pi_k b_k(u_1) \quad 1 \leq k \leq M \]
\[\alpha_k(t) = b_k(u_t) \sum_{l=1}^{M} \alpha_l(t-1)a_{l,k} \quad 1 < t \leq T, 1 \leq k \leq M. \]
Derivation of forward probability calculation

\[a_k(t) = P(u_1, u_2, \ldots, u_t, s_t = k) \]

\[= \sum_{l=1}^{M} P(u_1, u_2, \ldots, u_t, s_t = k, s_{t-1} = l) \]

\[= \sum_{l=1}^{M} P(u_1, u_2, \ldots, u_{t-1}, s_{t-1} = l)P(u_t, s_t = k \mid u_1, u_2, \ldots, u_{t-1}, s_{t-1} = l) \]

\[= \sum_{l=1}^{M} \alpha_l(t-1)P(u_t \mid s_t = k, s_{t-1} = l)P(s_t = k \mid s_{t-1} = l) \]

\[= \sum_{l=1}^{M} \alpha_l(t-1)P(u_t \mid s_t = k)P(s_t = k \mid s_{t-1} = l) \]

\[= b_k(u_t) \sum_{l=1}^{M} \alpha_l(t-1)a_{l,k} \]
• Define the **backward probability** $\beta_k(t)$ as the **conditional probability** of observing the data after time $t, u_i, i = t + 1, \ldots, T$, given the state at time t is k.

$$\beta_k(t) = P(u_{t+1}, \ldots, u_T \mid s_t = k) \quad 1 \leq t \leq T - 1$$

• Again, the backward probability can be computed by following recursive formula:

$$\beta_k(T) = 1$$

$$\beta_k(t) = \sum_{l=1}^{M} a_{k,l} b_l(u_{t+1}) \beta_l(t+1) \quad 1 \leq t < T$$
\[
\beta_k(t) = P(u_{t+1}, \ldots, u_T | s_t = k) \\
= \sum_{l=1}^{M} P(u_{t+1}, \ldots, u_T, s_{t+1} = l | s_t = k) \\
= \sum_{l=1}^{M} P(u_{t+1}, \ldots, u_T | s_{t+1} = l, s_t = k) P(s_{t+1} = l | s_t = k) \\
= \sum_{l=1}^{M} P(u_{t+1}, \ldots, u_T | s_{t+1} = l) a_{k,l} \\
= \sum_{l=1}^{M} P(u_{t+2}, \ldots, u_T | s_{t+1} = l, u_{t+1}) P(u_{t+1} | s_{t+1} = l) a_{k,l} \\
= \sum_{l=1}^{M} P(u_{t+2}, \ldots, u_T | s_{t+1} = l) b_l(u_{t+1}) a_{k,l} \\
= \sum_{l=1}^{M} a_{k,l} b_l(u_{t+1}) \beta_l(t+1)
\]
Compute $L_k(t)$

Compute $L_k(t)$ using forward and backward probabilities:

$$L_k(t) \equiv P(s_t = k \mid u) = \frac{P(u, s_t = k)}{P(u)} = \frac{\alpha_k(t) \beta_k(t)}{P(u)}$$

Proof:

$$P(u, s_t = k) = P(u_1, \ldots, u_T, s_t = k)$$

$$= P(u_1, \ldots, u_t, s_t = k) \ P(u_{t+1}, \ldots, u_T \mid u_1, \ldots, u_t, s_t = k)$$

$$= P(u_1, \ldots, u_t, s_t = k) \ P(u_{t+1}, \ldots, u_T \mid s_t = k)$$

$$= \alpha_k(t) \beta_k(t)$$
Compute $H_{k,l}(t)$

Compute $H_{k,l}(t)$ using forward and backward probabilities:

$$H_{k,l}(t) = P(s_t = k, s_{t+1} = l | u) = \frac{P(s_t = k, s_{t+1} = l, u)}{P(u)}$$

$$= \frac{1}{P(u)} \alpha_k(t) a_{k,l} b_l(u_{t+1}) \beta_l(t + 1)$$

Proof:

$$P(s_t = k, s_{t+1} = l, u) = P(u_1, \ldots, u_t, \ldots, u_T, s_t = k, s_{t+1} = l)$$

$$= P(u_1, \ldots, u_t, s_t = k)P(u_{t+1}, s_{t+1} = l | s_t = k, u_1, \ldots, u_t)$$

$$P(u_{t+2}, \ldots, u_T | s_{t+1} = l, s_t = k, u_1, \ldots, u_{t+1})$$

$$= \alpha_k(t)P(u_{t+1}, s_{t+1} = l | s_t = k)P(u_{t+2}, \ldots, u_T | s_{t+1} = l)$$

$$= \alpha_k(t)P(s_{t+1} = l | s_t = k)P(u_{t+1} | s_{t+1} = l, s_t = k) \beta_l(t + 1)$$

$$= \alpha_k(t)P(s_{t+1} = l | s_t = k)P(u_{t+1} | s_{t+1} = l) \beta_l(t + 1)$$

$$= \alpha_k(t) a_{k,l} b_l(u_{t+1}) \beta_l(t + 1)$$
Compute $P(u)$

The joint observed data likelihood is:

$$P(u) = \sum_{k=1}^{M} \alpha_k(t) \beta_k(t)$$

Proof:

$$P(u) = \sum_{k=1}^{M} P(u_1, \ldots, u_t, \ldots, u_T, s_t = k)$$

$$= \sum_{k=1}^{M} P(u_1, \ldots, u_t, s_t = k) P(u_{t+1}, \ldots, u_T | s_t = k, u_1, \ldots, u_t)$$

$$= \sum_{k=1}^{M} P(u_1, \ldots, u_t, s_t = k) P(u_{t+1}, \ldots, u_T | s_t = k)$$

$$= \sum_{k=1}^{M} \alpha_k(t) \beta_k(t)$$
The estimation algorithm

To summarize, estimation of model parameters requires iterating following steps, under the current estimates of parameters:

1. Compute the forward and backward probabilities:

\[
\alpha_k(1) = \pi_k b_k(u_1) \quad 1 \leq k \leq M
\]
\[
\alpha_k(t) = b_k(u_t) \sum_{l=1}^{M} \alpha_{l}(t-1)a_{l,k} \quad 1 < t \leq T, 1 \leq k \leq M.
\]
\[
\beta_k(T) = 1
\]
\[
\beta_k(t) = \sum_{l=1}^{M} a_{k,l} b_{l}(u_{t+1}) \beta_{l}(t+1) \quad 1 \leq t < T
\]
2. Compute whole data likelihood: \(P(u) = \sum_{k=1}^{M} \alpha_k(t) \beta_k(t) \).

3. Compute \(L_k(t) \) and \(H_{k,l}(t) \) from forward/backward probabilities:

\[
L_k(t) = \frac{\alpha_k(t) \beta_k(t)}{P(u)}
\]

\[
H_{k,l}(t) = \frac{1}{P(u)} \alpha_k(t) a_{k,l} b_l(u_{t+1}) \beta_l(t+1)
\]

4. Update parameters using \(L_k(t) \) and \(H_{k,l}(t) \) (assuming Normal emission probabilities):

\[
\mu_k = \frac{\sum_{t=1}^{T} L_k(t) u_t}{\sum_{t=1}^{T} L_k(t)}, \quad \sigma_k^2 = \frac{\sum_{t=1}^{T} L_k(t) (u_t - \mu_k)^2}{\sum_{t=1}^{T} L_k(t)}
\]

\[
a_{k,l} = \frac{\sum_{t=1}^{T-1} H_{k,l}(t)}{\sum_{t=1}^{T-1} L_k(t)}, \quad \pi_k = \frac{\sum_{t=1}^{T} L_k(t)}{T}
\]
- HMM is used to model sequential data.
- Difference between HMM and mixture model: mixture model assumes iid observations, HMM assumes underlying sequential correlation among hidden states.
- Important components in a HMM: initial, emission and transition probabilities.
- Goals of HMM: estimate hidden states and model parameters, find best path, future prediction.
- Parameter estimation via EM and forward-backward algorithm.
- Next lecture: dynamic programming and Viterbi algorithm to find the best path.