INTRODUCTION
Numerous epidemiological studies have shown that fine particles (PM$_{2.5}$, particles with aerodynamic diameter $<2.5\ \mu$m) are associated with cardiovascular and respiratory morbidity and mortality.1,2 Accurate PM$_{2.5}$ exposure estimates are crucial to air quality assessment and environmental health research. Measurements from ground-monitoring sites, which have high accuracy and reliable temporal coverage regardless of meteorological conditions, have been used in many epidemiological studies.3 However, ground monitors are costly to operate, therefore they have limited spatial coverage.

In 1999 and 2002, the National Aeronautics and Space Administration (NASA) launched its first two Earth Observing System satellites Terra and Aqua into polar orbits.4,5 Since then, an increasing body of literature showed that ground-level PM$_{2.5}$ can be quantitatively estimated from satellite-retrieved column aerosol optical depth (AOD), after accounting for the impact of land use and meteorological parameters on the PM$_{2.5}$-AOD relationship.$^{6-10}$ However, a major issue of applying satellite data in PM$_{2.5}$ exposure modeling is missing data owing to cloud cover, as satellite-retrieved AOD values are only available in regions with little or no cloud cover. For example, MODIS-Terra AOD data were available only about 50% of the time owing to cloud cover and unfavorable surface conditions.11 Missing data severely reduce the statistical power of PM$_{2.5}$ epidemiological models and can limit the choices of model structure (e.g., lag structure in PM$_{2.5}$ exposure estimates is difficult to implement), particularly as there is no reason to expect PM$_{2.5}$ to be the same for cloudy and clear days simply based on the meteorological controls on cloud formation and air pollution.10 Spatial smoothing techniques with land use parameters, such as highway length and emission source locations, have been proposed to fill the data gaps.12 However, these parameters are not temporally varying, and therefore cannot reflect the dynamic effect of cloud on daily PM$_{2.5}$ levels. Moreover, as spatial interpolation assumes a smooth and continuous transition of PM$_{2.5}$ levels from cloud-free regions to cloudy regions, it is likely that the resulted interpolated surfaces are overly smoothed and underestimate the true spatial variability in PM$_{2.5}$, especially when ground-level monitoring data are sparse.13

Previous studies showed that PM$_{2.5}$ level is probably related to cloud properties. Dawson et al.14 found increases in cloud liquid water content, optical depth, and cloudy area led to decreases in simulated PM$_{2.5}$ concentrations over land in January and July in Pittsburgh and Atlanta, respectively, although the negative impacts were not significant. Tai et al.15 showed a negative correlation between column cloud cover and total PM$_{2.5}$ concentrations in the Southeastern United States. Although Christopher et al.11 reported that cloud cover is not a major problem for inferring monthly to annual PM$_{2.5}$ from space-borne sensors, their results indicated that mean PM$_{2.5}$ values under available satellite-derived AOD conditions are higher than from all ground measurements. Liu et al.9 developed a two-stage generalized additive model to estimate daily PM$_{2.5}$ concentrations in cloud-free and
cloudy regions separately, and found significant differences in the spatial pattern of predicted PM$_{2.5}$ concentrations between cloud-free and cloudy regions.

Operational satellite aerosol remote sensing algorithms first identify pixels as “clear” or “cloudy” before attempting retrieval of aerosol microphysical or optical property. Retrieval of aerosol properties such as AOD is attempted on those pixels identified as “clear”, and retrieval of cloud properties is attempted on those pixels identified as “cloudy”. As such, the presence of satellite cloud data often signals missing AOD data, so they have the potential to fill the data gap left by satellite AOD in PM$_{2.5}$ statistical models. However, there has been little research to date on the association between cloud parameters and PM$_{2.5}$, and how to use this information in PM$_{2.5}$ exposure modeling. In this analysis, we explored the statistical associations of satellite-retrieved cloud properties with PM$_{2.5}$ mass and constituent concentrations using 11 years of data in the Southeastern United States. In this region, secondary ion species and organic matter (OM) formed by photochemical reactions in the atmosphere contributed to >50% of the PM$_{2.5}$ mass. Cloud cover might negatively affect PM$_{2.5}$ mass concentrations through the attenuation of photochemical reactions. Our objective is to evaluate the feasibility of satellite cloud parameters as statistical predictors of PM$_{2.5}$ concentrations in order to improve the spatial and temporal coverage of satellite-driven PM$_{2.5}$ statistical models.

MATERIALS AND METHODS

Cloud Data

The cloud data used in this study is Collection 5.1 Level-2 cloud products (MOD06), retrieved from the moderate resolution imaging spectro-radiometer (MODIS) sensors aboard NASA’s Terra satellite. We used daytime Terra MODIS cloud data with best quality and processing flags (usefulness flag = 1 and confidence flag = 3) in this study. Cloud parameters processed for the current analysis include cloud fraction (CF) and cloud optical thickness (COT) (Table 1). In our preliminary analysis, the correlations of PM$_{2.5}$ mass concentrations with CF and COT are more significant than other parameters such as cloud phase and cloud water path.

CF is calculated from each 5 x 5 group of 1-km resolution cloud mask pixels and has a 5-km spatial resolution at nadir, representing the fraction of a 25 km2 area covered by clouds as observed from above by MODIS. For each PM$_{2.5}$ ground-monitoring site, mean CF is calculated from the 5 x 5 group of CF pixels, that is, a 25 x 25 km2 area centered at the site. COT is derived from MODIS 0.645 µm, 2.13 µm, and 3.75 µm bands over land, and represents the optical thickness of clouds at visible wavelengths. COT data were resampled from its original 1-km resolution to 5-km resolution to match the spatial resolution of CF data, then mean COT was calculated from the 5 x 5 pixel group centered at each ground PM$_{2.5}$ monitoring site. This method is often used to reduce uncertainties in the instantaneous satellite observations when compared with more accurate and time-averaged, ground-based measurements. The choice of a 25 x 25 km2 area also avoids overlapping of CF and COT calculation areas between neighboring PM$_{2.5}$ sites, except for Pensacola (PNS) and outlying landing field no.8 (OLF) (Figure 1), which are very close to each other.

We also obtained 11 years of Terra MODIS Collection 5.1 Level-2 aerosol products (MOD04) and examined a 5 x 5 group of the 10-km pixels centered at each site (Table 1). The larger AOD matching area (50 x 50 km2) used to calculate mean AOD value for each ground site ensures clear separation of AOD coverage from cloud coverage. We divided the satellite-ground matched data records into three groups based on aerosol and cloud data availability at each site: Group 1 includes data records with both AOD and cloud retrievals; Group 2 includes data records with only AOD retrievals and no cloud retrievals; and Group 3 includes data records with only cloud retrievals and no AOD retrievals. The number of data records and mean values of PM$_{2.5}$ concentrations, AOD, and COT of each group are shown in Table 2, which shows that MODIS-Terra AOD data matched to the ground PM$_{2.5}$ sites were only available in 48.5% of the time. Because we are interested in how to use information provided by MODIS cloud products to supplement AOD data in PM$_{2.5}$ exposure models, Group 1 data records were excluded from further analysis. Table 2 also shows that nearly 25% of the PM$_{2.5}$ measurements are matched with both AOD and cloud retrievals. Having this subset may significantly increase the number of data records in small CF bins. However, the interaction between aerosols and clouds is complex. Satellite measurements of aerosols in the vicinity of clouds are influenced by several factors including aerosol hygroscopic growth in the humid air surrounding clouds, cloud-related particle changes, and 3-D radiative effects. Because this is the first attempt to study the association between ground PM$_{2.5}$ levels and MODIS cloud parameters, we would like to focus on situations with clearly no AOD retrievals. Therefore, Group 2 data records were also excluded from data analysis to simplify the interpretation of our results.

Ground PM$_{2.5}$ Measurements and Meteorological Data

Daily mean PM$_{2.5}$, and speciation concentrations from 2000 to 2010 were obtained from the Southeastern Aerosol Research and Characterization (SEARCH) Network (Figure 1). SEARCH sites collect daily average total PM$_{2.5}$ mass concentrations measured with the federal reference method (FRM) every day, and speciation data including sulfate, nitrate, ammonium, OM, elemental carbon (EC), and major metal oxides (MMO) every day or every third day. SEARCH measurements are guided by a detailed quality control and assurance protocol, much of which is derived from EPA guidelines. We selected daily FRM PM$_{2.5}$ measurement for

![Figure 1. Geographic distribution of the eight monitoring sites in SEARCH network.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Satellite/product</th>
<th>SDS name</th>
<th>Resolution</th>
<th>QA</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Terra/MOD06</td>
<td>“Cloud Fraction Day”</td>
<td>5 km</td>
<td>usefulness = 1 confidence = 3</td>
<td>19</td>
</tr>
<tr>
<td>COT</td>
<td>Terra/MOD06</td>
<td>“Cloud Optical Thickness”</td>
<td>1 km</td>
<td>usefulness = 1 confidence = 3</td>
<td>19</td>
</tr>
<tr>
<td>AOD</td>
<td>Terra/MOD04</td>
<td>“Optical Depth Land And Ocean”</td>
<td>10 km</td>
<td>None</td>
<td>27,28</td>
</tr>
</tbody>
</table>

Table 1. The cloud and aerosol data products and parameters used in this study.
Satellite cloud parameters as indicators of PM2.5 levels
Yu et al

Table 2. Mean values of PM2.5, AOD, and cloud fraction of three groups of MODIS aerosol/cloud observations for all data points and each site.

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th></th>
<th>Group 2</th>
<th></th>
<th>Group 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM2.5 (μg/m³)</td>
<td>AOD</td>
<td>PM2.5 (μg/m³)</td>
<td>AOD</td>
<td>PM2.5 (μg/m³)</td>
<td>AOD</td>
</tr>
<tr>
<td>All</td>
<td>7347</td>
<td>12.65</td>
<td>0.078</td>
<td>5942</td>
<td>14.72</td>
<td>0.25</td>
</tr>
<tr>
<td>ATL</td>
<td>894</td>
<td>14.48</td>
<td>0.099</td>
<td>719</td>
<td>18.17</td>
<td>0.29</td>
</tr>
<tr>
<td>YRK</td>
<td>971</td>
<td>11.63</td>
<td>0.081</td>
<td>716</td>
<td>15.12</td>
<td>0.27</td>
</tr>
<tr>
<td>BHM</td>
<td>934</td>
<td>16.51</td>
<td>0.061</td>
<td>846</td>
<td>19.94</td>
<td>0.27</td>
</tr>
<tr>
<td>CTR</td>
<td>1103</td>
<td>11.67</td>
<td>0.077</td>
<td>737</td>
<td>13.54</td>
<td>0.25</td>
</tr>
<tr>
<td>GFP</td>
<td>806</td>
<td>11.58</td>
<td>0.081</td>
<td>720</td>
<td>12.48</td>
<td>0.24</td>
</tr>
<tr>
<td>OAK</td>
<td>984</td>
<td>11.33</td>
<td>0.064</td>
<td>658</td>
<td>12.54</td>
<td>0.23</td>
</tr>
<tr>
<td>PNS</td>
<td>732</td>
<td>13.51</td>
<td>0.087</td>
<td>792</td>
<td>13.21</td>
<td>0.24</td>
</tr>
<tr>
<td>OLF</td>
<td>923</td>
<td>10.91</td>
<td>0.075</td>
<td>754</td>
<td>12.02</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Days is the number of days of data available between 1 January 2000 and 31 December 2010, PM2.5 is the mean PM2.5 mass concentrations (μg/m³) for all days. *PM2.5 data from PNS site are from 2000 to 2009.

RESULTS

A total of 14,106 data points with available cloud retrievals but missing AOD values were identified from 2000 to 2010 (Table 4). The average PM2.5 concentrations vary by season, land use type, and location. Summer has the highest mean PM2.5 levels, followed by spring, fall, and winter. Long-term average PM2.5 levels at inland and urban sites are 20–25% higher than coastal and rural sites, respectively. Average CF and COT are ~10% higher in winter than the rest of the year. There are no significant differences in CF and COT values between urban and rural subsets, or between inland and coastal subsets.

PM2.5 concentration is negatively correlated with CF (R² = 0.74, Slope = −0.046), and this association varies significantly by season (Figure 2). The negative slope between CF and PM2.5 is stronger in summer (R² = 0.65, Slope = −0.054) and fall (R² = 0.49, Slope = −0.054) than in spring (R² = 0.20, Slope = −0.022), whereas the correlation in winter is statistically insignificant (P-value > 0.05). In contrast, the association between PM2.5 and COT is not statistically significant (P-value > 0.05).
concentration and CF does not change substantially between urban (slope = −0.047) and rural sites (slope = −0.047) as shown in Figure 2c, except the constant discrepancy of PM$_{2.5}$ mass concentration levels between them. A t-test showed that the regression slope difference between urban and rural sites is insignificant (P-value > 0.05). PM$_{2.5}$ mass concentrations decrease more significantly at inland sites (Slope: −0.057) than at coastal sites (Slope: −0.043) with increasing CF, indicating that CF is a more effective indicator of change in PM$_{2.5}$ levels at inland sites than at coastal sites. Site-specific plots of PM$_{2.5}$-CF relations also show similar results (Supplementary Materials, Supplementary Figure S1).

Figure 3 shows that PM$_{2.5}$ concentration is negatively associated with COT. However, the distribution of COT values is uneven, with ~75% of COT values below 20. We calculated the number, median, mean, and SD of COT, CF, PM$_{2.5}$ total mass, and constituent concentrations (nitrate, sulfate, ammonium, OM, EC, and MMO), and meteorological variables (WS, Temp, RH, SR, and PRECIP) for subsets of COT values larger and smaller than 20 (Supplementary Table S5 in the Supplementary Materials), and the statistical characteristics of COT values ≤ 20 differ substantially from that of COT values > 20. For low COT values (≤ 20), the SD of COT is smaller than high COT values (> 20), and the COT values are more concentrated. However, CF, PM$_{2.5}$ (especially for sulfate and nitrate), and SR all have substantially larger SDs than those with high COT values. Consequently, we defined an empirical cutoff of COT = 20 to fit a linear regression line for COT ≤ 20 and COT > 20 separately. Compared with more complex model formats including power-law, parabola, and

<table>
<thead>
<tr>
<th>Subset</th>
<th>Num</th>
<th>PM$_{2.5}$ (µg/m3)</th>
<th>CF (%)</th>
<th>COT</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>14106</td>
<td>11.2 ± 6.2</td>
<td>89.6 ± 17.2</td>
<td>16.5 ± 17.5</td>
</tr>
<tr>
<td>Season</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>3383</td>
<td>9.9 ± 5.5</td>
<td>95.8 ± 10.9</td>
<td>21.5 ± 20.3</td>
</tr>
<tr>
<td>Spring</td>
<td>3534</td>
<td>11.2 ± 5.4</td>
<td>88.8 ± 17.8</td>
<td>16.7 ± 18.1</td>
</tr>
<tr>
<td>Summer</td>
<td>4132</td>
<td>12.4 ± 6.9</td>
<td>85.2 ± 19.3</td>
<td>11.8 ± 13.3</td>
</tr>
<tr>
<td>Fall</td>
<td>3057</td>
<td>11.0 ± 6.5</td>
<td>89.5 ± 17.0</td>
<td>17.0 ± 16.7</td>
</tr>
<tr>
<td>Land use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>6947</td>
<td>12.1 ± 6.5</td>
<td>89.9 ± 16.3</td>
<td>16.3 ± 17.7</td>
</tr>
<tr>
<td>Rural</td>
<td>7159</td>
<td>10.3 ± 5.7</td>
<td>89.3 ± 18.0</td>
<td>16.7 ± 17.3</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inland</td>
<td>7087</td>
<td>12.6 ± 6.7</td>
<td>91.0 ± 16.4</td>
<td>18.0 ± 18.0</td>
</tr>
<tr>
<td>Coastal</td>
<td>7019</td>
<td>9.8 ± 5.3</td>
<td>88.1 ± 17.8</td>
<td>14.9 ± 16.8</td>
</tr>
</tbody>
</table>

Table 4. Descriptive statistics (mean ± SD) for PM$_{2.5}$, CF, and COT in each subset.
exponential equations, the piecewise linear function has the highest model R^2 and is easier to interpret (Supplementary Materials, Supplementary Figure S2 and Supplementary Table S6). Our results showed that the PM$_{2.5}$ concentration decreases more rapidly with COT when COT is ≥ 20 (Slope: -0.15) as compared with when COT is > 20 (Slope: -0.032). Similar to CF, the association between PM$_{2.5}$ concentration and COT also varies by season (Figure 3b). The negative association of COT with PM$_{2.5}$ is significant in warmer seasons (summer: $R^2 = 0.65$, Slope: -0.15; fall: $R^2 = 0.46$, Slope: -0.15; spring: $R^2 = 0.40$, Slope: -0.12), whereas insignificant in winter (P-value > 0.05). Figure 3c shows that the negative associations between COT and PM$_{2.5}$ levels in both land use types are neither significantly different from each other nor the slope derived using the entire data set at $\alpha = 0.05$ level. As shown in Figure 3d, COT has a slightly greater impact on inland sites (slope: -0.19) than coastal sites (slope: -0.14) when COT is ≤ 20.

Figure 4 shows that secondary PM$_{2.5}$ constituents including sulfate ($R^2 = 0.73$, slope $=-0.021$) and OM ($R^2 = 0.37$, slope $=-0.011$) decrease significantly with increasing CF. Primary constituents such as EC and MMO are less affected as indicated by lower model R^2 values and close-to-zero slopes. Nitrate levels increase with CF ($R^2 = 0.31$, slope $=0.0019$). Figure 5 shows decreasing trends of sulfate, ammonium, OM with COT, but the negative slopes are greater at low COT levels (i.e., ≤ 20) (sulfate: $R^2 = 0.61$, slope $=-0.062$; ammonium: $R^2 = 0.34$, slope $=-0.013$; OM: $R^2 = 0.78$, slope $=-0.076$) than at high COT levels (> 20) (sulfate: $R^2 = 0.91$, slope $=-0.20$; ammonium: $R^2 = 0.90$, slope $=-0.006$; OM: $R^2 = 0.64$, slope $=-0.014$). The levels of primary PM$_{2.5}$ constituents such as EC and MMOs decrease with increasing COT only at low COT levels.

Figure 6 shows that CF and COT are positively associated with WS, RH, and PRECIP. Stronger horizontal mixing with increasing WS as well as wet deposition are expected to lower PM$_{2.5}$ levels under clouds. In addition, Tai et al.15 found a negative correlation of PM$_{2.5}$ with RH in the Southeast based on observed meteorological and PM$_{2.5}$ data. However, the mechanism for the relationship between RH and PM$_{2.5}$ is complex as individual PM$_{2.5}$ components show different correlations with RH.15 The associations of meteorological parameters with COT are generally stronger at low COT levels as indicated by steeper negative slopes than high COT levels.

The seasonal variation of the relationship of PM$_{2.5}$ with CF and COT might be associated with temperature. Table 5 shows that sulfate and OM concentrations are the highest and nitrate concentrations the lowest in summer; these patterns are reversed in winter. As a result, the impact of cloud cover would be more pronounced in warm seasons than in cold seasons. The fractions of sulfate and OM in PM$_{2.5}$ are similar between urban and rural sites, which could result in comparable negative associations between cloud properties (CF, COT) and PM$_{2.5}$ levels at urban and rural sites. Owing to the slight differences in sulfate and OM mass
concentrations between inland sites and coastal sites, PM$_{2.5}$ mass concentrations decrease a little more significantly at inland sites than at coastal sites with increasing cloud cover.

DISCUSSION

A major limiting factor of current satellite-driven PM$_{2.5}$ exposure models in air pollution health effects research is missing data due to cloud cover. Using MODIS-retrieved cloud parameters and ground PM$_{2.5}$ mass concentrations, we showed that there are significant and systematic differences in PM$_{2.5}$ levels between cloudy and cloud-free regions, and PM$_{2.5}$ mass concentrations are negatively correlated with CF and COT. During our study period, secondary particles such as sulfate and OM account for up to 70% of the total PM$_{2.5}$ mass at each SEARCH site (Supplementary Figure S3, Supplementary Materials). The negative association between total PM$_{2.5}$ and cloud cover can be largely attributed to the negative response of sulfate and OM to cloud cover. The decrease in sulfate concentration is probably associated with the attenuation of photochemical reactions under cloud cover, although it may be partly offset by the positive influence from in cloud SO$_2$ oxidation at high RH.15 For OM, this might be related to less frequent prescribed burns and wildfires under cloudy and high humidity conditions, which are major emissions sources of carbonaceous aerosols in this region.25 The positive association of nitrate with cloud cover likely reflects the RH dependence of the ammonium nitrate formation equilibrium and decreased volatilization of ammonium nitrate with lower Temp under cloud cover.14,26 As the counter-ion for sulfate and nitrate, the negative association of ammonium with cloud cover is likely due to the combined effects of sulfate and nitrate.15 Our piecewise regression results, which showed significant different regression slopes between PM$_{2.5}$ and COT at COT \leq 20 and COT > 20, might also be the reflection of the impact of cloud cover on secondary particle generation. Light transmittance of clouds is roughly equal to 1/COT for large COT values (personal communication with Dr. Steven Platnick). When COT is $>$ 20, clouds might be thick enough to prevent direct sunlight from reaching the ground. As a result, the increase in COT no longer has a strong impact on PM$_{2.5}$ levels. The smaller regression slope at high COT values might also be related to the fact that lower Temp below clouds can lead to reduced photochemical reaction rates.
However, it should be noted that the production and removal of PM$_{2.5}$ is a complex interaction among various surface and meteorological variables, and these interactions are difficult to unravel with only the observation data sets used in this study. For example, the impact of PRECIP on PM$_{2.5}$ mass and constituent concentrations cannot be fully explored without additional information such as cloud type. Our empirical analysis cannot fully explain the different associations between PM$_{2.5}$ mass and constituent concentrations and low/high COT levels either. Further examination should be based on satellite-ground observations and atmospheric chemistry models to delineate the relationship between cloud conditions and ground PM$_{2.5}$.

Nonetheless, our empirical data analysis showed that MODIS cloud parameters are strongly associated with ground PM$_{2.5}$ mass concentrations. On one hand, satellite cloud parameters alone are insufficient to estimate PM$_{2.5}$ concentrations, as there is significant variability in PM$_{2.5}$ levels within each CF or COT value bin. On the other hand, almost all current satellite PM$_{2.5}$ models involve

Figure 5. Relationships between PM$_{2.5}$ speciation and cloud optical thickness.

© 2014 Nature America, Inc.

Journal of Exposure Science and Environmental Epidemiology (2014), 1 – 10
Figure 6. Relationships between meteorological variables and CF and COT.

multiple covariates such as meteorological and land use parameters to modify and strengthen the association between satellite AOD and PM$_{2.5}$. Each of these covariates is correlated with PM$_{2.5}$, but is not robust enough to estimate PM$_{2.5}$ alone. However, together they form highly predictive models. Similarly, satellite cloud parameters will need to be used in conjunction with these
Satellite cloud parameters as indicators of PM$_{2.5}$ levels
Yu et al

covariates to estimate PM$_{2.5}$ concentrations although a demonstration of such models is beyond the scope of this paper. In conclusion, the statistically significant relationships between PM$_{2.5}$ mass concentrations and cloud properties (CF and COT) observed in our study serve an important purpose in PM$_{2.5}$ exposure modeling, especially for predicting PM$_{2.5}$ daily concentrations. Our paper is the first attempt to establish the feasibility of satellite-retrieved cloud parameters to be considered in similar ways to other meteorological and land use parameters in satellite PM$_{2.5}$ models. Given the global and almost daily coverage of satellite instruments such as MODIS, these cloud parameters may be developed into predictors of PM$_{2.5}$ levels. The regression slopes obtained in the current analysis can be used together with predicted PM$_{2.5}$ concentrations derived from satellite AOD in cloud-free conditions to estimate PM$_{2.5}$ concentrations under cloud cover, effectively doubling the coverage of satellite PM$_{2.5}$ models. The relationships between cloud properties and PM$_{2.5}$ mass concentrations described in this study could be also used as observational constraints for atmospheric chemistry models.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was partially supported by NASA Applied Sciences Program (grant no. NNX09AT52G, PI: Y Liu). In addition, this publication was made possible by USEPA grant RB34799. Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in the publication. The work of Chao Yu was supported by the China Scholarship Council (CSC) under the State Scholarship Fund. We thank Dr. Steven Platnick and Jerusha Barton for their technical support.

REFERENCES

15. Tai APK, Mickley LJ, Jacob DJ. Correlations between fine particulate matter (PM$_{2.5}$) and meteorological variables in the United States: implications for the sensitivity of PM$_{2.5}$ to climate change. Atmos Environ 2010; 44: 3976–3984.
21. Tai APK, Mickley LJ, Jacob DJ. Correlations between fine particulate matter (PM$_{2.5}$) and meteorological variables in the United States: implications for the sensitivity of PM$_{2.5}$ to climate change. Atmos Environ 2010; 44: 3976–3984.

Table 5. Mean values of PM$_{2.5}$ constituent concentrations (µg/m3) for SEARCH subsets on cloudy days during 2000–2010.

<table>
<thead>
<tr>
<th>Location</th>
<th>PM$_{2.5}$ (µg/m3)</th>
<th>SO$_2$ (µg/m3)</th>
<th>NO$_3$ (µg/m3)</th>
<th>NH$_4^+$ (µg/m3)</th>
<th>EC (µg/m3)</th>
<th>OM (µg/m3)</th>
<th>MNOs (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>11.2</td>
<td>3.61</td>
<td>0.55</td>
<td>1.25</td>
<td>0.78</td>
<td>3.98</td>
<td>0.53</td>
</tr>
<tr>
<td>Season</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td>9.88</td>
<td>2.41</td>
<td>0.95</td>
<td>1.05</td>
<td>0.79</td>
<td>3.83</td>
<td>0.29</td>
</tr>
<tr>
<td>Spring</td>
<td>11.22</td>
<td>3.64</td>
<td>0.51</td>
<td>1.25</td>
<td>0.75</td>
<td>3.95</td>
<td>0.47</td>
</tr>
<tr>
<td>Summer</td>
<td>11.22</td>
<td>3.67</td>
<td>0.51</td>
<td>1.27</td>
<td>0.76</td>
<td>4.16</td>
<td>0.59</td>
</tr>
<tr>
<td>Fall</td>
<td>11.02</td>
<td>3.67</td>
<td>0.42</td>
<td>1.27</td>
<td>0.82</td>
<td>3.9</td>
<td>0.36</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>12.06</td>
<td>3.77</td>
<td>0.63</td>
<td>1.35</td>
<td>0.96</td>
<td>4.31</td>
<td>0.62</td>
</tr>
<tr>
<td>Rural</td>
<td>10.36</td>
<td>3.38</td>
<td>0.43</td>
<td>1.1</td>
<td>0.49</td>
<td>3.45</td>
<td>0.43</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inland</td>
<td>12.56</td>
<td>3.95</td>
<td>0.69</td>
<td>1.46</td>
<td>0.94</td>
<td>4.58</td>
<td>0.51</td>
</tr>
<tr>
<td>Coast</td>
<td>9.83</td>
<td>3.07</td>
<td>0.3</td>
<td>0.92</td>
<td>0.5</td>
<td>2.95</td>
<td>0.56</td>
</tr>
</tbody>
</table>
Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website (http://www.nature.com/jes)