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SUMMARY

In laboratory validation studies, it is often important to assess agreement between two assays, based
on di�erent techniques. Oftentimes, both assays have lower limits of detection and thus measurements
are left censored. For example, in studies of Human Immunode�ciency Virus (HIV), the branched
DNA (bDNA) assay was developed to quantify HIV-1 RNA concentrations in plasma. Validation of
newer assays, such as the RT-PCR (reverse transcriptase polymerase chain reaction) involves assessing
agreement of measurements obtained using the two techniques. Both bDNA and RT-PCR assays have
lower limits of detection and thus new statistical methods are needed for assessing agreement between
two left-censored variables. In this paper, we present maximum likelihood and generalized estimating
equations approaches to evaluate agreement between two assays that are subject to lower limits of
detection. The concordance correlation coe�cient is used as an agreement index. The methodology is
illustrated using HIV RNA assay data collected as part of a long-term HIV cohort study. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In assay validation, two assays based on di�erent techniques are often compared. Assay val-
idation usually involves several fundamental parameters such as (1) accuracy, (2) precision,
(3) selectivity, (4) sensitivity, (5) reproducibility, and (6) stability [1]. We focus on as-
sessing agreement between two assays via parameters representing accuracy, precision and
reproducibility. Although these parameters can be assessed separately, the concordance cor-
relation coe�cient [2, 3], is a popular agreement index for assessing accuracy and precision
simultaneously that can also be used to assess reproducibility. In practice, assays often have
lower limits of detection (LOD), denoting the lowest concentration of an analyte that the
bioanalytical procedure can reliably di�erentiate from the background noise. Thus, the data
collected are left censored. For example, in Human Immunode�ciency Virus (HIV) research,
the branched DNA (bDNA) assay was developed to quantify HIV-1 RNA concentrations in
plasma, prior to more recent assays based on the reverse transcriptase polymerase chain re-
action (RT-PCR) technique. Both assays are subject to di�erent lower limits of detection. To
deal with left censored data, a naive (ad hoc) approach is to assign a constant value, say the
lower limit or half of the lower limit, to subjects who have left censored data and to conduct
the analysis as if we have complete data. This ad hoc approach is obviously biased and tends
to produce larger mean estimates and smaller variance estimates than would have been ob-
tained without lower limits of detection. Lyles et al. [4] proposed a maximum likelihood (ML)
method based on normality assumptions to estimate the correlation coe�cient between two
left censored variables. Their method can be extended to estimate the concordance correlation
coe�cient.
In this paper, we describe the ML approach and present an alternative generalized estimating

equations (GEE) approach to evaluate agreement between two assays that are both subject
to lower limits of detection. In Section 2, the estimation and inference procedure for the
concordance correlation coe�cient are presented. A simulation study is conducted to compare
the ad hoc, ML and GEE approaches in Section 3. In Section 4, we present an example from
a HIV study for illustration. We conclude with a brief discussion in Section 5.

2. ASSESSING ASSAY AGREEMENT FOR LEFT CENSORED DATA

Let X and Y be continuous random variables representing the two assay readings on the same
subject based on two di�erent techniques. Due to lower limits of detection, we do not observe
X and Y directly. Instead, we observe XL and YL, the left-censored variables corresponding
to X and Y with LODs Lx and Ly, where

XL=

{
x if X = x ¿ Lx;

x0 if X = x ¡ Lx;
YL=

{
y if Y =y ¿ Ly

y0 if Y =y ¡ Ly

with x0 and y0 as �xed constants. In practice, the value of LOD or half of LOD is typi-
cally used for x0 and y0. We assume that (X; Y )′ has a mean of (�x; �y)′ and a covariance
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matrix of ⎛
⎝ �2x ��x�y

��x�y �2y

⎞
⎠

To assess the agreement of the two assay readings, we use the concordance correlation coef-
�cient (CCC) [2] index expressed as

�c =
2��1�2

�21 + �
2
2 + (�1 − �2)2 =��

a (1)

where � and �a are the precision (degree of variation) and accuracy (degree of location or
scale shift) components of �c, respectively. Note that �c is a function of �=(�1; �2; �1; �2)′

and �. A naive estimate (the ad hoc method) for �c is to replace � and � by using the
sample means and sample covariance matrix based on the XL’s and YL’s. However, because
the XL’s and YL’s are left censored versions of (X; Y ), these sample estimates are biased for
the mean and covariance matrix of (X; Y ). An ML approach under normality assumptions [4]
for estimating � in the presence of left censored data can be easily extended to estimate the
concordance correlation coe�cient if we insert the ML estimates for � and � into equation
(1). Let {xLi; yLi}; i=1; : : : ; N , be a random sample from random variables (XL; YL). The ML
estimates can be obtained by maximizing the observed data likelihood, based on N pairs of
(XL; YL)

L=
N∏
i=1

[
1

�y|xLi�x
�
(
yLi − �y|xLi
�y|xLi

)
�
(
xLi − �x
�x

)]d1i [ 1
�x
�
(
xLi − �x
�x

)
�
(
Ly − �y|xLi
�y|xLi

)]d2i

×
[
1
�y
�
(
yLi − �y
�y

)
�
(
Lx − �x|yLi
�x|yLi

)]d3i [∫ Ly

−∞

1
�y
�
(
y − �y
�y

)
�
(
Lx − �x|y
�x|y

)
dy
]d4i

where �(·) and �(·) are the standard univariate normal density and cumulative distribution
functions, respectively, �y|x=�y + (��y=�x)(x− �x); �y|x=�y

√
1− �2, and d1i ; d2i ; d3i ; d4i are

indicator variables for the following four conditions, respectively: (a) xLi ¿ Lx and yLi ¿ Ly,
(b) xLi ¿ Lx and YLi=y0, (c) xLi= x0 and yLi ¿ Ly, (d) xLi= x0 and YLi=y0.
As an alternative, we now present two sets of generalized estimating equations for estimating

the � and � parameters. We then construct the estimate for the agreement index �c to assess
agreement of two assays with lower limits of detection.
We �rst estimate the parameter �=(�x; �y; �x; �y)′ by modelling the marginal mean of

Zi=(xLi; yLi; x2Li; y
2
Li) with E(Zi)=U(�) in the �rst set of estimating equations

N∑
i=1
D′
iV

−1
i (Zi −U(�))= 0 (2)

where Vi is the working covariance matrix for Zi, and the expressions for U(�)= (U[1];U[2];
U[3];U[4])′ and the derivative matrix Di= @U=@� are presented in the Appendix. The GEE
approach uses empirical covariance estimates to adjust for a mis-speci�ed covariance structure
without the loss of much e�ciency [5, 6]. For convenience, we take Vi as a diagonal matrix
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with diagonal entries as the variances of XL; YL; X 2 and Y 2 that we obtain under normality.
Thus, we have

Vi=diag(U[3]−U[1]2;U[4]−U[2]2; 2�4x + 4�2x�2x ; 2�4y + 4�2y�2y)
as the working covariance matrix.
A second set of estimating equations based on modelling the conditional mean of xLi|yLi is

used to estimate the correlation parameter �. Note that the conditional distribution of xLi|yLi
is de�ned by

XL|YL=
{
XL|y if Y =y ¿ Ly

XL|y0 if Y =y ¡ Ly

with

XL=

{
x if X = x ¿ Lx

x0 if X = x ¡ Lx

Under normality assumptions, the distribution of X |Y =y is N (�x+��x(y−�y)=�y; (1−�2)�2x).
Let �y(Y )= (Y − �y)=�y. Thus, for yLi=yi ¿ Ly, we have �i(�; �)=E(XLi|YLi=yLi)=

∫∞
Lx

xf(x|yLi) dx+x0
∫ Lx

−∞ f(x|yLi) dx= x0�(!xy(yLi))+(�x+��x�y(yLi))�(−!xy(yLi))+�x
√
1− �2

�(!xy(yLi)), where !xy(Y )= �x=
√
1− �2 − ��y(Y )=

√
1− �2 with �x=(Lx − �x)=�x (see

Appendix for details). For simplicity and ease of computation, we use the same expres-
sion for �i(�; �) with yLi=y0 to approximate E(XLi|YLi=y0)=E(XL|Y ¡ Ly) (see Appendix
for the exact expression of E(XL|Y ¡ Ly)). We show that this approximation is reasonable
in the simulation study and the example if x0 and y0 are chosen to satisfy E(X )=E(XL) and
E(Y )=E(YL). Our approach will yield asymptotically unbiased parameter estimates for any
choices of x0 and y0 if we do not use the above approximation. However, specifying x0 and
y0 based on the conditions E(X )=E(XL) and E(Y )=E(YL) generally tends to provide better
e�ciency and 95 per cent coverage for � [7].
We solve for � by using the following second set of estimating equations:

N∑
i=1
C ′
i W

−1
i (xLi − �i(�; �))=0 (3)

where

Ci =
@�i
@�
=�x�y(yLi)�(−!xy(yLi))− @!xy(yLi)

@�
(Lx − x0)�(!xy(yLi))

− �√
1− �2�x�(!xy(yLi))

with

@!xy(yLi)
@�

=
�

(1− �2)3=2 �x − 1
(1− �2)3=2 �y(yLi)
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Here, Wi is the working variance of xLi|yLi. Again, because the GEE method is robust to
misspeci�cation of the working variance, we use Wi=var(X |Y )= (1 − �2)�2x , as obtained
under normality for simplicity.
To obtain the point estimates of � and �, a modi�ed Fisher-scoring iterative procedure is

used. Speci�cally, we obtain the estimate of �, �̂, by the iteration process,

�̂(t+1) = �̂(t) +
(
N∑
i=1
D̂′
iV̂

−1
i D̂i

)−1 N∑
i=1
D̂′
iV̂

−1
i (Zi −U(�̂(t)))

By replacing � with �̂ in the second set of estimating equations (3), the estimate �̂ of � can
be obtained by the iteration process,

�̂(t+1) = �̂(t) +
(
N∑
i=1
Ĉ ′
i Ŵ

−1
i Ĉi

)−1 N∑
i=1
Ĉ ′
i Ŵ

−1
i (xLi − �i(�̂(t); �̂))

Following similar arguments used for the generalized estimating equations [8], we can show
that the parameter estimates are consistent provided that U(�) is correctly speci�ed and �i(�; �)
is a good approximation to E(XLi|YLi=y0). This is true whether or not the working covariance
matrices in the two sets of equations are correctly speci�ed.
Following Prentice [9] and Barnhart and Williamson [10], we can show that the joint

asymptotic distribution of N 1=2((�̂ − �); (�̂ − �))′ is multivariate normally distributed with
mean 0 and variance matrix N times B, where

B=�−1��′−1 =�−1
(
�11 �12

�21 �22

)
�′−1

�=

⎛
⎝
∑N

i=1D
′
iV

−1
i Di 0∑N

i=1 C
′
i W

−1
i Gi

∑N
i=1 C

′
i W

−1
i Ci

⎞
⎠

(4)

and

Gi=
@�i
@�
=
(
@�i
@�x

;
@�i
@�y

;
@�i
@�x

;
@�i
@�y

)′
with

@�i
@�x

=�(−!xy(yLi))− (x0 − Lx)
(�x
√
1− �2)�(!xy(yLi))

@�i
@�y

= �
�x
�y
�(−!xy(yLi)) + �(x0 − Lx)

(�y
√
1− �2)�(!xy(yLi))

@�i
@�x

= ��y(yLi)�(−!xy(yLi)) +
√
1− �2�(!xy(yLi))− �x(x0 − Lx)

(�x
√
1− �2)�(!xy(yLi))

and

@�i
@�y

= − �x
�y
��y(yLi)�(−!xy(yLi)) + �(x0 − Lx)

(�y
√
1− �2)�y(yLi)�(!xy(yLi))
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The estimates of the elements in matrix � are as follows:

�̂11 =
N∑
i=1
D̂′
iV̂

−1
i (Zi −U(�̂))(Zi −U(�̂))′V̂−1

i D̂i

�̂12 =
N∑
i=1
D̂′
iV̂

−1
i (Zi −U(�̂))(xLi − �i(�̂; �̂))′Ŵ−1

i Ĉi

�̂22 =
N∑
i=1
Ĉ ′
i Ŵ

−1
i (xLi − �i(�̂; �̂))(xLi − �i(�̂; �̂))′Ŵ−1

i Ĉi

�̂12 = �̂′
21

We refer to B̂ as the empirically corrected estimate of the variance–covariance matrix of �̂
and �̂.
To estimate the agreement index �c, we insert the estimates of � and � in the de�nition

for �c (equation (1)). The delta method is used to estimate the standard error of �̂c based on
the empirically corrected estimate of the covariance matrix for �̂ and �̂.

3. SIMULATION

To compare the ad hoc, ML and GEE approaches, we performed a simulation study. Bi-
variate normal data with sample size of 100 were generated using one of the following
six combinations of parameter settings: �x=0; �y=0:2; �x=0:8; �y=1; �=0:25; 0:50; 0:75, and
left censoring rate of (25 per cent, 25 per cent) or (40 per cent, 25 per cent). True values of
Lx and Ly are determined by the censoring rates. Results based on 1000 simulated data sets
are reported in Table I. We used the formula in Reference [2] to compute the SE for the
ad hoc method. To check on the approximation of �i(�; �) to E(XL|Y ¡ LY ) when yLi=y0,
we �nd that the absolute di�erences between these two quantities ranged from 0.00314 to
0.04494 under these six parameter settings. The simulation results from the GEE approach in
Table I also support that the approximation is reasonable.
The ad hoc estimates are obviously biased. In general, both the ML and GEE methods

perform well but tend to slightly underestimate the true value. The GEE method performs
slightly better than the ML method when one compares the mean standard error (SE) to the
empirical standard deviation (SD) based on the 1000 estimates. The mean SE from the GEE
agrees well with the empirical SD while the mean SE from ML is slightly larger than the
empirical SD. This resulted in a slightly better 95 per cent coverage for the ML method than
the GEE method due to the slight parameter underestimation in both methods. As suggested
in Barnhart et al. [11], the 95 per cent coverage for the GEE method is improved when the
SE is multiplied by a factor of

√
N=(N − 2).
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Table I. Simulation results based on 1000 data sets with sample size of 100.

Empirical Mean 95 per cent
Per cent censoring True � True �c Method Mean �̂c SD SE coverage (*)

(25 per cent, 25 per cent) 0.25 0.238 ML 0.233 0.092 0.094 0.943
GEE 0.233 0.093 0.093 0.935 (0.940)
Ad Hoc 0.195 0.092 0.087 0.901

0.50 0.476 ML 0.468 0.077 0.079 0.951
GEE 0.464 0.078 0.078 0.941 (0.941)
Ad Hoc 0.406 0.083 0.076 0.852

0.75 0.714 ML 0.706 0.050 0.053 0.963
GEE 0.692 0.052 0.052 0.946 (0.949)
Ad Hoc 0.640 0.059 0.053 0.741

(40 per cent, 25 per cent) 0.25 0.238 ML 0.232 0.095 0.098 0.939
GEE 0.232 0.095 0.096 0.939 (0.940)
Ad Hoc 0.189 0.093 0.086 0.893

0.50 0.476 ML 0.467 0.079 0.083 0.952
GEE 0.463 0.080 0.081 0.945 (0.949)
Ad Hoc 0.396 0.085 0.075 0.815

0.75 0.714 ML 0.705 0.052 0.056 0.970
GEE 0.696 0.055 0.055 0.953 (0.956)
Ad Hoc 0.628 0.062 0.052 0.648

∗The number in parentheses is the adjusted 95 per cent coverage where the standard error is multiplied by
a factor of

√
N=(N − 2).

4. EXAMPLE

We use an HIV example to illustrate the use of the ML and GEE methods to assess agree-
ment for two assays with lower limits of detection. The data set came from the Mul-
ticenter AIDS Cohort Study (MACS). It was originally analysed by Mellors et al. [12]
for a quality control analysis of the bDNA assay methodology. The HIV-1 RNA concen-
tration in plasma was measured using the bDNA signal-ampli�cation assay. The LOD of
this assay is 500 copies=mL. To perform quality control of the assay technology, a ran-
dom sample of size 300 was obtained from the original data and the plasma HIV-1 RNA
concentration was also measured by the RT-PCR assay (LOD=400 copies=mL). The pur-
pose of studying this sub-data is to examine the agreement between readings produced by
the two assay technologies. The bDNA data contained 17 undetectable readings, imply-
ing a 5.6 per cent censoring rate. The RT-PCR contained 4 undetectable readings, for a
1.33 per cent censoring rate. A natural log transformation was applied to both the bDNA
and RT-PCR readings. We treat log(RT-PCR) as the X variable and log(bDNA) as the
Y variable.
Figure 1 shows histograms and Q–Q plots of the log-transformed measurements for the

observed log(RT-PCR) and log(bDNA) data where subjects with censored data are excluded.
In the Q–Q plots, expected quantiles were obtained based on the appropriate truncated normal
distributions. These plots suggest that both log(RT-PCR) and log(bDNA) are approximately
normal. Figure 2 displays the scatter plot for log(bDNA) versus log(RT-PCR). The cloud of
points is shifted to the right, indicating that readings from RT-PCR are systematically higher
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Figure 1. Histograms and Q–Q plots for log transformed RT-PCR (top row) and bDNA (bottom row).
Expected quantiles based on a truncated normal distribution with mean and variance equal to their
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Table II. Agreement results for comparing log-transformed HIV RNA readings based
on bDNA and RT-PCR assays.

LOD = (400, 500) copies=mL LOD = (2000, 2000) copies=mL

Method �̂c 95 per cent CI �̂ �̂a �̂c 95 per cent CI �̂ �̂a

ML 0.831 (0.764, 0.881) 0.942 0.882 0.830 (0.759, 0.881) 0.943 0.880
GEE 0.850 (0:808; 0:884) 0.962 0.884 0.851 (0.804, 0.888) 0.962 0.885
Ad hoc∗ 0.795 (0.761, 0.829) 0.910 0.874 0.740 (0.697, 0.784) 0.846 0.875

∗Assigned 1
2 of the log(LOD) to censored data.

than readings from bDNA. Data points are clustered, indicating a strong correlation between
the two readings.
Table II summarizes results based on the ML method, the GEE method and the ad hoc

method, for estimating �c, � and �a when comparing log(bDNA) to log(RT-PCR). In the ad
hoc approach, we replaced non-detects by x0 = 1

2 log(XL) and y0 =
1
2 log(YL). Due to the low

censoring rate of both assays, the GEE, ML and ad hoc estimates of CCC are not too far apart
(0.850, 0.831 and 0.795, respectively). However, if the censoring rate were high, the ad hoc
method would be likely to produce a much less reasonable estimate. To illustrate this point,
we reconducted the analyses assuming that the LOD for both assays was 2000 copies=mL. In
this case, the censoring rate for RT-PCR is 6.7 per cent and the censoring rate for bDNA is
17.7 per cent. We note that the GEE and ML estimates are little changed when the LODs are
altered from (400, 500) copies=mL to (2000, 2000) copies=mL. However, the ad hoc estimate
changed from 0.791 to 0.740.
As this example suggests, the ad hoc approach can lead to severe bias when the amount of

left censoring is non-negligible. Standard error estimates are also invalid when applying the
ad hoc method.
The GEE method produced a slightly higher estimate of �c than the ML method (0.850

versus 0.831). The precision (accuracy) components were estimated as 0.962 (0.884) and
0.942 (0.882) for the GEE and ML methods, respectively. This implies that the bDNA
reading is highly correlated with the RT-PCR reading, while overall agreement is slightly
lower due to the moderate to high values on accuracy. The original analysis of the re-
lationship of bDNA and RT-PCR [12] was based upon a sample size of 400 instead of
300, where the additional 100 subjects came from a random sample from readings below
3000 copies=mL. By design, this was therefore not a random sample from the MACS data.
Mellors et al. [12] reported the sample correlation coe�cient to be 0.93 between log(bDNA)
and log(RT-PCR) when 400 copies=mL was assigned to subjects with censored bDNA read-
ings (below 500 copies=mL) and 300 copies=mL was assigned to subjects with censored RT-
PCR readings (below 400 copies=mL). Based on the random sample of 300 subjects, the
sample correlation coe�cient is 0.94. Note that this is larger than the ad hoc result in
Table II because larger values of x0 = log(300) and y0 = log(400) were used in the ad
hoc approach as employed by Mellors et al. [12]. Due to the high correlation, Mellors
et al. [12] suggested a linear relationship between log(RT-PCR) and log(bDNA) and ex-
pressed the estimated relationship on the original scale as: RT-PCR (copies=mL) =5:13 ×
(bDNA) (copies=mL)0:9. If we use the random sample of 300 subjects, this estimated
relationship (with non-detects replaced by x0 = log(300) and y0 = log(400)) becomes

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3347–3360
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RT-PCR (copies=mL) =7:04×(bDNA) (copies=mL)0:88. For comparison, we assume that there
is a linear relationship between log(RT-PCR) and log(bDNA). Our GEE results with
�̂=(�̂x; �̂y; �̂x; �̂y)= (9:207; 10:039; 1:735; 1:574) and �̂=0:962 imply that RT-PCR
(copies=mL)=7:42 × (bDNAcopies=mL)0:87 where 7:42= exp(�̂y − �̂x�̂�̂y=�̂x) and 0:87=
�̂�̂y=�̂x. We conclude that the bDNA and RT-PCR measurements agree up to location and
scale shifts, where the bDNA assay has consistently lower average readings than the ones
from the RT-PCR assay.
To check on the approximation of �i(�; �) to E(XL|Y ¡ Ly) when yLi=y0, we found that

the di�erences between these two quantities are 0.00571 and 0.00697, respectively, for the
two LOD settings, when these two quantities are evaluated at the GEE estimates.

5. DISCUSSION

We have proposed a GEE approach to estimate the concordance correlation coe�cient for
left censored data that often occur in assay validation. Our example showed that the GEE
approach works well and was comparable to the maximum likelihood approach based on the
bivariate normality assumption.
In the proposed GEE approach, we used the conditional mean in the second set of esti-

mating equations. A straightforward GEE would be using Zi=(xLi ; yLi ; x2Li ; y
2
Li ; xLiyLi)

′. This
approach, termed as GEE(p), was investigated in Dr Song’s dissertation research [7] where
the expectation of a product term instead of a conditional mean is considered. We found
that the GEE(p) approach is more computationally intensive than the conditional GEE ap-
proach because GEE(p) requires evaluation of E(xLiyLi) involving double integration. In
terms of performance, both the GEE(p) and conditional GEE methods performed similarly
except that the GEE(p) approach may be more stable when censoring rates in both vari-
ables are higher than 40 per cent. Thus, the conditional GEE approach is recommended
because the censoring rate is unlikely to be higher than 40 per cent in both variables
in practice.
We have used two stage GEE in parameter estimation. This is equivalent to one set of

estimating equations by combining the proposed two sets of equations together with a block
diagonal working covariance matrix. If general working covariance matrix is used, then mis-
speci�cation from one set of estimating equations may a�ect consistent estimation of param-
eters from the other set of equations.
In using the proposed GEE method, one would need to decide which of the two vari-

ables should be used as the X variable. This is not a choice when the data were col-
lected, but a choice at the time of parameter estimation when the GEE method is used.
It should not a�ect consistency if any one of the two variables is used as the X variable.
Intuitively we felt that it is more e�cient to use the variable with lower censoring rate as the
X variable.
For stability, a Fisher’s Z transformation may be used on � in parameter estimation. In

addition, the Fisher’s Z transformation can also be applied to �c to improve 95 per cent
coverage [2]. This is especially useful when the true value of � or �c is close to the boundary
value (−1 or 1),
The computing programs from this paper are available from Jingli Song upon request.
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APPENDIX

Let Zi=(xLi ; yLi ; x2Li ; y
2
Li)

′. Note that with �x=(Lx − �x)=�x and �y=(Ly − �y)=�y

E(xLi) =
∫ Lx

−∞
x0

1√
2	�x

e−(x−�x)
2=2�2x dx +

∫ ∞

Lx
x

1√
2	�x

e−(x−�x)
2=2�2x dx

= x0
∫ �x

−∞

1√
2	
e−t

2=2 dt +
∫ ∞

�x
(�x + t�x)

1√
2	
e−t

2=2 dt

= x0�(�x) + �x�(−�x) + �x�(�x)

and

E(x2Li) =
∫ Lx

−∞
x20

1√
2	�x

e−(x−�x)
2=2�2x dx +

∫ ∞

Lx
x2

1√
2	�x

e−(x−�x)
2=2�2x dx

= x20

∫ �x

−∞

1√
2	
e−t

2=2 dt +
∫ ∞

�x
(�x + t�x)2

1√
2	
e−t

2=2 dt

= x20�(�x) + �
2
x�(−�x) +

∫ ∞

�x
(2�x�xt + t2�2x)

1√
2	
e−t

2=2 dt

= x20�(�x) + �
2
x�(−�x) + 2�x�x�(�x) + �2x(�x�(�x) + �(−�x))

= x20�(�x) + (�
2
x + �

2
x)�(−�x) + (�2x�x + 2�x�x)�(�x)

= x20�(�x) + (�
2
x + �

2
x)�(−�x) + (Lx + �x)�x�(�x)

Thus,

U=E(Zi)=

⎛
⎜⎜⎜⎜⎜⎜⎝

x0�(�x) + �x�(−�x) + �x�(�x)
y0�(�y) + �y�(−�y) + �y�(�y)

x20�(�x) + (�
2
x + �

2
x)�(−�x) + (Lx + �x)�x�(�x)

y20�(�y) + (�
2
y + �

2
y)�(−�y) + (Ly + �y)�y�(�y)

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Di=
@U
@�
=

⎛
⎜⎜⎜⎜⎜⎜⎝

d11 0 d13 0

0 d22 0 d24

d31 0 d33 0

0 d42 0 d44

⎞
⎟⎟⎟⎟⎟⎟⎠
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where

d11 =�(−�x) + (Lx − x0)�(�x)=�x
d13 =�(�x)[�x(Lx − x0)=�x + 1]

d22 =�(−�y) + (Ly − y0)�(�y)=�y
d24 =�(�y)[�y(Ly − y0)=�y + 1]

d31 = 2�x�(−�x) + �(�x)(L2x + 2�2x − x20)=�x
d33 = 2�x�(−�x) + �(�x)[(Lx + �x)(1 + �2x) + �x(�2x + �2x − x20)=�x]

d42 = 2�y�(−�y) + �(�y)(L2y + 2�2y − y20)=�y

d44 = 2�y�(−�y) + �(�y)[(Ly + �y)(1 + �2y) + �y(�2y + �2y − y20)=�y]

Derivation of E(XLi|YLi=yLi):
If yLi ¿ Ly then

�i(�; �) = E(XLi|YLi=yLi)=
∫ ∞

Lx
xf(x|yLi) dx + x0

∫ Lx

−∞
f(x|yLi) dx

=
∫ ∞

Lx

x√
2	�x

√
1− �2 e

−1=2
(

1√
1−�2

x−�x
�x

− �√
1−�2

yLi
−�y
�y

)2
dx

+x0
∫ Lx

−∞

1√
2	�x

√
1− �2 e

−1=2
(

1√
1−�2

x−�x
�x

− �√
1−�2

yLi
−�y
�y

)2
dx

=
∫ ∞

!xy(yLi )
(�x + ��x�y(yLi) + s�x

√
1− �2) 1√

2	
e−(1=2)s

2
ds+ x0

∫ !xy(yLi )

−∞

1√
2	
e−(1=2)s

2
ds

= x0�(!xy(yLi)) + (�x + ��x�y(yLi))�(−!xy(yLi)) + �x
√
1− �2�(!xy(yLi))

where !xy(Y )= �x=
√
1− �2−��y(Y )=

√
1− �2 with �y(Y )= (Y−�y)=�y and �x=(Lx−�x)=�x.

If yLi=y0, i.e. yi ¡ Ly then

�i(�; �) = E(XLi|YLi=y0)=E(XLi|yi ¡ Ly)

=
∫ ∞

Lx
xf(x|yi ¡ Ly) dx + x0

∫ Lx

−∞
f(x|yi ¡ Ly) dx

=
∫ ∞

Lx
x
f(x; yi ¡ Ly)
Pr(yi ¡ Ly)

dx + x0
∫ Lx

−∞

f(x; yi ¡ Ly)
Pr(yi ¡ Ly)

dx
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=
1

�(�y)

[∫ ∞

Lx
xPr(yi ¡ Ly|x)f(x) dx + x0

∫ Lx

−∞
Pr(yi ¡ Ly|x)f(x) dx

]

=
1

�(�y)

[∫ ∞

Lx
x
∫ Ly

−∞
f(y|x) dyf(x) dx + x0

∫ Lx

−∞

∫ Ly

−∞
f(y|x) dyf(x) dx

]

=
1

�(�y)

[∫ Ly

−∞

∫ ∞

Lx
xf(y|x)f(x) dx dy + x0

∫ Ly

−∞

∫ Lx

−∞
f(y|x)f(x) dx dy

]

=
1

�(�y)

∫ Ly

−∞

[∫ ∞

Lx
xf(x; y) dx + x0

∫ Lx

−∞
f(x; y) dx

]
dy

=
1

�(�y)

∫ Ly

−∞
f(y)

[∫ ∞

Lx
xf(x|y) dx + x0

∫ Lx

−∞
f(x|y) dx

]
dy

=
1

�(�y)

∫ Ly

−∞
[x0�(!xy(y)) + (�x + ��x�y(y))�(−!xy(y))

+�x
√
1− �2�(!xy(y))]f(y) dy

≈ x0�(!xy(y0)) + (�x + ��x�y(y0))�(−!xy(y0)) + �x
√
1− �2�(!xy(y0))

where x0 and y0 are chosen to satisfy E(XL)=E(X ) and E(YL)=E(Y ).
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