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SUMMARY

In clinical studies, assessing agreement of multiple readings on the same subject plays an important
role in the evaluation of continuous measurement scale. The multiple readings within a subject may be
replicated readings by using the same method or=and readings by using several methods (e.g. di�erent
technologies or several raters). The traditional agreement data for a given subject often consist of either
replicated readings from only one method or multiple readings from several methods where only one
reading is taken from each of these methods. In the �rst case, only intra-method agreement can be
evaluated. In the second case, traditional agreement indices such as intra-class correlation (ICC) or
concordance correlation coe�cient (CCC) is often reported as inter-method agreement. We argue that
these indices are in fact measures of total agreement that contains both inter and intra agreement.
Only if there are replicated readings from several methods for a given subject, then one can assess
intra, inter and total agreement simultaneously. In this paper, we present new inter-method agreement
index, inter-CCC, and total agreement index, total-CCC, for agreement data with replicated readings
from several methods where the ICCs within methods are used to assess intra-method agreement for
each of the several methods. The relationship of the total-CCC with the inter-CCC and the ICCs is
investigated. We propose a generalized estimating equations approach for estimation and inference.
Simulation studies are conducted to assess the performance of the proposed approach and data from a
carotid stenosis screening study is used for illustration. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: agreement; reliability; concordance correlation coe�cient; intraclass correlation; gene
ralized estimating equations

∗Correspondence to: Huiman X. Barnhart, Department of Biostatistics and Bioinformatics, Duke Clinical Research
Institute, Duke University, P.O. Box 17969, Durham, NC 27715, U.S.A.

†E-mail: huiman.barnhart@duke.edu
‡E-mail: songji@lilly.com
§E-mail: mhaber@sph.emory.edu

Contract=grant sponsor: Emory University Quadrangle Fund
Contract=grant sponsor: NIH; contract=grant number: R0I MH070028-01A1

Received March 2004
Copyright ? 2004 John Wiley & Sons, Ltd. Accepted July 2004



1372 H. X. BARNHART, J. SONG AND M. J. HABER

1. INTRODUCTION

In clinical studies, continuous scales are often taken by several methods (e.g. di�erent tech-
nologies or di�erent raters). Before using the measurement scale in practice, one often needs
to assess agreement of multiple readings taken by several methods. If there is an observed
disagreement, one often wants to know whether the disagreement is due to random error
within a method or due to true di�erences attributed by the di�erent methods. If the disagree-
ment is due to the random error within a particular method, this method may not be used in
practice. If disagreement is due to the true di�erence among the methods, the methods will
need to be modi�ed for improvement. Therefore, assessing agreement often leads to assess-
ing both intra-method agreement and inter-method agreement, where intra-method agreement
measures consistency of readings taken by the same method and the inter-method agreement
measures consistency of true readings attributed by the methods. A true reading here may
be interpreted as the mean value of in�nite replicated readings produced by the method on
the same subject. Note that we de�ne the inter-method agreement based on the true readings,
not on the observed readings, because we believe that the inter-method agreement should not
be obscured by the random error within method. An observed reading is the sum of true
reading by the method and a random error within the method. Traditionally, agreement data
for a given subject often consist of replicated readings from only one method or multiple
readings from several methods where only one reading is taken from each of the several
methods. In the �rst case, only intra-method agreement can be evaluated. In the second case,
one cannot evaluate intra-method agreement nor inter-method agreement because one cannot
estimate the random variation within a method and the method’s true reading when there
are no replications within a method. Because observed multiple readings contain variation
due to both true di�erences attributed by the methods and random error within the methods,
any agreement measure based on the observed readings are in fact total agreement that con-
tains both intra- and inter-method agreement. Therefore, the popular agreement indices based
on the observed readings such as concordance correlation coe�cient (CCC) [1] or di�erent
versions of intra-class correlation coe�cient (ICC) [2] are in fact the measure of total agree-
ment although they are often reported as inter-method agreement. Most of the ICC indices
make assumptions that the means and=or variances of readings by di�erent methods are equal
(the exchangeable assumption). This assumption may not be realistic because one method
may produce consistently higher value than other method and one method may have larger
variability than other method. We will focus on CCC-type indices except in assessing intra
agreement.
To assess intra, inter and total agreement simultaneously, we advocate an agreement study

design where each of the di�erent methods produce replicated readings on each subject.
With replicated readings, we can use intra-ICC to evaluate intra-method agreement for each
method. A new index, inter-CCC, is proposed in Section 2 to assess the inter-method agree-
ment based on the true readings. The total agreement is evaluated with another proposed
index, total-CCC, based on observed readings (see Section 2). We also investigate the re-
lationship of the total-CCC with intra-ICCs and inter-CCC. In Section 3, we propose a
generalized estimating equations (GEE) approach for estimation and inferences
about these indices. We conduct simulation studies to assess the performance of a GEE
approach in Section 4. In Section 5, we use data from a carotid stenosis screening study
to illustrate the use of these indices. In Section 6, we extend the proposed
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method to the case when covariates are involved. A brief discussion is presented in
Section 7.

2. METHOD

Suppose that there are N randomly selected subjects and J �xed methods, where jth method
produces Kij(Kij ¿ 2) replicated measurements for the ith subject. Here, we allow the number
of replications to be di�erent by methods and subjects. Thus, without making any distribu-
tional assumption, it is reasonable to assume that conditional on subject i and method j the
replicated measurements Yijk ; k=1; : : : ; Kij, are independently and identically distributed (iid).
Let Ek(Yijk |ij)=�ij and Vark(Yijk |ij)=�2ij be the conditional mean and variance of Yijk . We
use Ek(X ) and Vark(X ), respectively, to denote the expectation and variance with respect to
the random variable X associated with index k. Similarly, we use index ij in the conditioning
argument to denote conditioning on subject i and method j. Here �ij is a random variable
because subjects are considered random. The parameter �ij can be viewed as the true read-
ing of the jth method on the ith subject. This reading can be interpreted as the mean value
of the jth method produced on the ith subject if the jth method could produce in�nitely
many replicated readings on the ith subject. Let Yijk =�ij + eijk . We use the following no-
tation and assumptions: Ei(�ij|j)=�∗j, Vari(�ij|j)= �2j , Corri(�ij; �ij′ |jj′)=��jj′ , Ek(eijk |ij)=0,
Vark(eijk |ij)=�2ij, Ei(�2ij|j)=�2∗j, eijk are mutually independent, �ij and eijk are mutually in-
dependent. Here, we use ∗ in place of index i to denote the expectation with respect to the
random variable associated with index i.

2.1. Using ICCs to assess intra-method agreement

For a given method, say method j, we have Ei(yijk |j)=�∗j and Vari(yijk |j)= �2j +�2∗j for any
k. Thus, the interchangeability assumption is met for intraclass correlation coe�cient under
the one-way ANOVA model [3] for the jth method. The jth ICC can be written as

�Ij =
Cov(yijk ; yijk′)√
Var(yijk)Var(yijk′)

=
�2j

�2j + �2∗j
(1)

The ICCs, �Ij ’s, can be used to assess intra-method agreement.

2.2. Using inter-CCC to assess inter-method agreement

Lin [1] proposed a concordance correlation coe�cient (CCC) to evaluate the agreement be-
tween two �xed methods. Barnhart et al. [4] extended the CCC to overall CCC (OCCC) for
evaluating agreement among multiple methods each taking one reading for each subject. In
this paper, we use the abbreviation CCC for concordance correlation coe�cient, regardless
of whether there are two or more than two methods. As stated in the introduction, these
indices are de�ned at the level of observed readings and thus are, in fact, measures of to-
tal (inter+intra) method agreement. Because we are interested in an inter-method agreement
index based on the di�erence of the methods’ true readings, we use the true inter-method
variability, �2i =

∑J
j=1(�ij − �i•)2=(J − 1), where �i•=

∑J
j=1 �ij=J , to measure the true di�er-

ences among methods. The inter-CCC is de�ned similar to the CCC and OCCC with Yij’s
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replaced by �ij’s

�c(�) = 1− E(�2i )
E(�2i |�′

js are independent)

= 1− E(
∑J
j=1(�ij − �i•)2=(J − 1))

E(
∑J
j=1(�ij − �i•)2=(J − 1)|�′

js are independent)

= 1− E(
∑J−1
j=1

∑
j′¿j(�ij − �ij′)2=J (J − 1))

E(
∑J−1
j=1

∑
j′¿j(�ij − �ij′)2=J (J − 1)|�′

js are independent)

where �j is the random vector with the ith component as �ij. The proposed inter-CCC has
the following properties similar to OCCC:

• −16�c(�)61, �c(�)=1 indicates a perfect inter-method agreement without concerning
any internal error of a method.

• �c(�) can be expressed as a function of �∗j’s, �j’s and �
�
jj′ .

�c(�) =
2

∑J−1
j=1

∑
j′¿j �

�
jj′�j�j′

(J − 1)∑J
j=1 �

2
j +

∑J−1
j=1

∑
j′¿j(�∗j − �∗j′)2

(2)

• �c(�) is a weighted average of pairwise inter-CCCs.

�c(�)=

∑J−1
j=1

∑
j′¿J �jj′�c(jj′)(�)∑J−1

j=1

∑
j′¿J �jj′

(3)

where �jj′ = �2j+�
2
j′+(�∗j−�∗j′)2 is the weight for the pair (j; j′), �c(jj′)(�)=2�

�
jj′�j�j′=[�

2
j

+ �2j′ + (�∗j − �∗j′)2] is the inter-CCC between method j and method j′.
• �c(�)=1 if and only if ��jj′ =��, �2j = �2∗ and �∗j=�∗•, for j=1; : : : ; J .
• If we assume ��jj′ =�� for all j and j′, i.e. the same precision for all the pairs of
methods, then the inter-CCC can be expressed as a product of precision and overall
accuracy, �c(�)=���a�, where �

� is the precision and �a�=(2
∑J−1
j=1

∑
j′¿j �j�j′)=[(J −

1)
∑J
j=1 �

2
j +

∑J−1
j=1

∑
j′¿j(�∗j − �∗j′)2] is the overall accuracy.

• Equation (2) does not contain the term �2∗j, indicating that it is not a�ected by the
random error within method.

2.3. Using total-CCC to assess total agreement

As mentioned in the previous sub-section, the CCC and the OCCC measure the total agreement
between two methods and multiple methods, respectively, when Kij=1. In this sub-section,
we extend the index to total-CCC for the general case of Kij¿2. For the purpose of de�nition
that is consistent with CCC and OCCC, the total-CCC is based on a set of J observed readings
where no two readings are from the same method. This is also due to the intent that only
a single reading from one of the methods (instead of the average of readings from several
methods) will be used in practice if the agreement among methods is shown to be high.
Because the replicated readings made by the same method are iid, we can use J observed
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readings from a random sample of size J where the jth reading is randomly sampled from
the Kij readings made by method j. Speci�cally, let Yijo denote a randomly selected reading
from the Kij readings, Yij1; : : : ; YijKij , made by method j on subject i. Then (Yijo; j=1; : : : ; J )
forms a random sample of J readings for subject i. Let Yi•o be the arithmetic mean of all
Yijos, j=1; : : : ; J . We de�ne total-CCC as

�c(Y )=1− Ei[
∑J
j=1(Yijo − Yi•o)2=(J − 1)]

Ei[
∑J
j=1(Yijo − Yi•o)2=(J − 1)|Yi1o; : : : ; YiJo are uncorrelated]

Note Ei(Yijo|j)=Ei(Ek(Yijk |jk))=�∗j, Vari(Yijo|j)=Vari(Ek(Yijk |ij)) + Ei(Vark(Yijk |ij))= �2j +
�2∗j and Covi(Yijo; Yij′o)=Covi(�ij + eijk ; �ij′ + eij′k)=�

�
jj′�j�j′ . We can rewrite the total-CCC

as a function of the �∗js, �2∗js, �
2
j s and �

�
jj′s

�c(Y )=
2

∑J−1
j=1

∑
j¡j′ �

�
jj′�j�j′

(J − 1)∑J
j=1 �

2
j +

∑J−1
j=1

∑
j¡j′(�∗j − �∗j′)2 + (J − 1)∑J

j=1 �
2∗j

(4)

The total-CCC reduces to the CCC if Kij=1 and J =2. This index is also the OCCC if
Kij=1 and J¿2. Note that the total-CCC depends only on the distribution of Yijk . It does
not depend on the random sampling of the readings nor on the number of replications (Kij).
The di�erence between the total-CCC in (4) and the inter-CCC in (2) is that equation (4)

contains the term �2∗j. This is because �c(Y ) is de�ned at the level of observed readings.
The total-CCC contains both between method and within method variability. Therefore, the
total-CCC is a function of the inter-CCC and the ICCs. We investigate the relationship among
the three indices in the next sub-section.

2.4. Relationship among total-CCC, inter-CCC and ICCs

Rewriting formula (4), the total-CCC is related to the inter-CCC and the ICCs as

1
�c(Y )

=
(J − 1)∑J

j=1 �
2
j +

∑J−1
j=1

∑
j¡j′(�∗j − �∗j′)2]

2
∑J−1
j=1

∑
j¡j′ �

�
jj′�j�j′

+
(J − 1)∑J

j=1 �
2
∗j

2
∑J−1
j=1

∑
j¡j′ �

�
jj′�j�j′

=
1

�c(�)
+
1
J

J∑
j=1
!j(1− �Ij )

where !j=(�2∗j + �
2
j )=[

∑J−1
j=1

∑
j¡j′ �

�
jj′�j�j′=(J (J − 1)=2)]. This implies

• �c(�) is always greater than or equal to �c(Y ), assuming that the correlation between a
pair of methods’ readings is positive. In other words, there is more agreement between
methods’ true readings than between methods’ observed readings.

• The weight !j is the ratio of the variance of the jth method to the average of all the
between-method’s variances.

• The bigger the �c(�), the bigger the �c(Y ); the bigger the �Ij s, the bigger the �c(Y ). In
other words, high total agreement among methods implies both high inter-method and
the high intra-method agreement.

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1371–1384
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3. ESTIMATION AND INFERENCE

Let �=(�∗;�
2
∗; �

2;��)′ be the vector of parameters with �∗=(�∗1; : : : ; �∗J )′, �
2 = (�21; : : : ; �

2
J )

′,
�2∗=(�

2
∗1; : : : ; �

2
∗J )

′, and ��=(��12; : : : ; �
�
(J−1)J ). Equations (1), (2) and (4) show that �

I
j , �c(�),

and �c(Y ) are functions of �. Therefore, estimation of these indices can be obtained by
plugging in the estimate of � into these equations:

�̂Ij =
�̂
2
j

�̂
2
j + �̂

2
∗j

(5)

�̂c(�) =
2

∑J−1
j=1

∑
j′¿j �̂

�
jj′ �̂j�̂j′

(J − 1)∑J
j=1 �̂

2
j +

∑J−1
j=1

∑
j′¿j(�̂∗j − �̂∗j′)2

(6)

�̂c(Y ) =
2

∑J−1
j=1

∑
j′¿j �̂

�
jj′ �̂j�̂j′

(J − 1)∑J
j=1 �̂

2
j + (J − 1)∑J

j=1 �̂
2
∗j +

∑J−1
j=1

∑
j′¿j(�̂∗j − �̂∗j′)2

(7)

If we have �̂ and the estimated covariance matrix of �̂, then we will use delta method to
perform inference on �̂Ij , �̂c(�), and �̂c(Y ). Below we propose a GEE approach [5–7] for
obtaining the estimates of � and covariance matrix of �̂.
Following the notations and assumptions as Section 2.1, we can estimate the parameters

�∗=(�∗1; : : : ; �∗J )′, �
2 = (�21; : : : ; �

2
J )

′, �2∗=(�
2
∗1; : : : ; �

2
∗J )

′ and ��=(��12; : : : ; �
�
(J−1)J ) through a

series of estimating equations.

• In the �rst set of estimating equations, we estimate �∗ by modelling the marginal mean
of Yi•=(Yi1•; : : : ; YiJ•)′, where Yij•=

∑Kij
k=1 Yijk =Kij; j=1; : : : ; J; i=1; : : : ; N . We use • in

the place of index j to represent the average of all the J methods.

N∑
i=1
D′
i1V

−1
i1 (Yi• − �∗)= 0

where Di1 = @�∗=@�∗= IJ and Vi1 is the working covariance matrix for Yi. Here IJ is a
J × J identity matrix.

• In the second set of estimating equations, we estimate �2∗ by
N∑
i=1
D′
i2V

−1
i2 (Ui − �2∗)= 0

where Ui=(
∑Kij

k=1(Yi1k − Yi1•)2=(Ki1 − 1); : : : ; (YiJk − YiJ•)2=(KiJ − 1))′, Di2 = @�2∗=@�2∗= IJ ,
and Vi2 is the working covariance matrix for Ui.

• The third set of estimating equations is to estimate �2 by modelling the marginal mean
of Wi.

N∑
i=1
D′
i3V

−1
i3 (Wi − g(�∗; �

2))= 0

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1371–1384



ASSESSING INTRA, INTER AND TOTAL AGREEMENT 1377

where Wij=(Y 2ij•−Uij=Kij) and Wi=(Wi1; : : : ; WiJ )′, g(�∗; �
2)=E(Wi)=�2∗+�

2, Di3 = @g
(�2;�2∗;�∗)=@�

2 = IJ , and Vi3 is the working covariance matrix for Wi.
• At last, we estimate �� by the cross products Yij•Yij′•(j′¿j). Let Zi=(Yi1•Yi2•; Yi1•
Yi3•; : : : ; Yi(J−1)•YiJ•)′ and note that E(Yij•Yij′•)=�∗j�∗j′ + �

�
jj′�j�j′ . We use Fisher’s Z-

transformation to model the correlation of pairwise true readings of methods as

1
2
log

1 + ��jj′
1− ��jj′

=Qijj′�

where Qijj′ is an indicator variable for pairs (j; j′) when no other covariates are involved.
We will discuss the case with covariates in Section 6. There are two reasons to model
the ��jj′ through Fisher’s Z-transformation. First, � ranges from −∞ to ∞ so that it can
e�ectively control the boundary problem. Second, according to Lin [1], this transforma-
tion provides better normality and stability. We estimate � by the following estimating
equations:

N∑
i=1
D′
i4V

−1
i4 (Zi − h(�; �2;�2∗;�∗))= 0

where Di4 = @h(�; �
2;�2∗;�∗)=@�, h(�; �

2;�2∗;�∗)=E(Zi) and Vi4 is the working covariance
matrix for Zi.

The estimating process begins by obtaining �̂∗ and �̂
2
∗ in the �rst two estimating equations

via a modi�ed Fisher-scoring algorithm. We then plug �̂∗ and �̂
2
∗ in for �∗ and �

2
∗ in the third

estimating equation and solve for �2. Next, we plug in �̂∗ , �̂
2
∗ and �̂

2 into the fourth estimating
equation and solve for �. Estimate for �� is then obtained by using the inverse of the Fisher’s
Z-transformation. If there are no covariates involved in the study and the independent working
covariance matrices are used in each set of estimating equations, the estimates of �∗, �

2, and �2∗
can be expressed in closed forms and they turn out to be the moment estimates. The estimate
of � can be solved by using a Fisher-scoring numerical method. In our simulation studies
(Section 4), we set these working covariance matrices, Vi1, Vi2, Vi3 and Vi4, as the sample
covariance matrices of Yi•, Ui, Wi and Zi, respectively. Following Barnhart and Williamson
[8] and Prentice [9], we can similarly obtain an empirically corrected covariance matrix for
the estimated parameters �̂=(�̂∗; �̂

2; �̂2∗; �̂)
′.

If the data are normally distributed, we can obtain estimates for � by using MIXED pro-
cedure in the popular commercial software SAS [10]. The following syntax may be used:

proc mixed;
class id method;
model Y=method/noint s;
random method/G subject=id type=un V;
repeated /R group=method;
run;

where the solution in the model statement provides the estimate for �∗, the G matrix provides
the estimates for �2 and ��, and the R matrix provides the estimates for �2∗. Note that the
MIXED procedure does not provide estimate for the covariance of �̂ and thus one would not

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1371–1384



1378 H. X. BARNHART, J. SONG AND M. J. HABER

be able to carry out inferences. An alternative approach is to �nd the estimate for covariance
of �̂ via bootstrap approach where sampling with replacement is taken at subject level.

4. SIMULATION STUDY

Simulation studies were conducted to evaluate the performance of the GEE approach for esti-
mation and inference of the proposed indices. Simulations were performed for small (n=25),
moderate (n=50) and large sample sizes (n=100, and 400) with two settings of parame-
ters. In both settings, we assume that there are three methods and that each method pro-
duces Kij=3 replicated readings on each subject. We �rst generate (�i1; �i2; �i3)′ from a
three-dimensional (3D) multivariate normal distribution with mean �∗=(�∗1; �∗2; �∗3)′ and
covariance matrix �� with �2j and �

�
jj′�j�j′ in the diagonal and o� diagonal entries, respec-

tively. Second, we generate (eij1; eij2; eij3)′ from a 3D multivariate normal distribution with
mean (0; 0; 0)′ and covariance matrix �ej=�2∗jI3, j=1; 2; 3. Then the data for the ith sub-
ject is (yi12; yi13; yi21; yi22; yi23; yi31; yi32; yi33)′ with yijk =�ij + eijk ; j=1; 2; 3 and k=1; 2; 3:
Simulation results are based on 1000 simulated data sets.
The �rst parameter setting assumes that there is a small mean change among the true read-

ings of each method and a high correlation among pairs of the true readings. We also assume
low intra-method variability. This parameter setting implies high inter, moderate intra and total
agreement as shown in Table I. Speci�cally, we used �∗=(0; 0:1; 0:2)

′, �2∗=(1:0; 1:1; 1:2)
′,

�2 = (4:0; 4:1; 4:2)′ and ��=(0:96; 0:97; 0:98)′. We evaluated the performance of the GEE ap-
proach for this parameter setting based on 1000 simulated data sets. Table I shows the results
of the GEE approach. These results indicate that for small sample size, there exists a minor
bias on the point estimation and this method tends to underestimate the true parameter. For
large sample sizes, the point estimation tends to be unbiased, indicating the consistency of
the point estimates of these indices. The 95 per cent coverage is very close to 95 per cent
for the large sample sizes.
The second parameter setting is designed for a large within method variability compared

with the variability of the true readings of the methods. We used moderate correlation coef-
�cients among the ‘true’ readings of all the three methods. Speci�cally, we set �∗=(1:0; 1:2;
1:4)′, �2∗=(2:0; 3:0; 4:0)

′, �2 = (2:0; 3:0; 4:0)′ and ��=(0:5; 0:6; 0:7)′. This parameter setting
implies moderate to low inter, intra and total agreement (see Table II). We present the sim-
ulation results of the GEE in Table II. From this table, we observe a similar trend in the
results as shown in the �rst simulation study.

5. EXAMPLE

We use data from a carotid stenosis screening study conducted at Emory University from
1994 to 1996 for illustration. The data was originally analysed in previous papers [4, 8].
The purpose of the carotid stenosis screening study is to determine the suitability of the two
magnetic resonance angiography (MRA) method and the intra-arterial angiogram (IA) method.
The two methods using the MRA technology are two-dimensional (2D) time of �ight and
3D time of �ight. For each method, three raters using all three methods measured the carotid

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:1371–1384
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Table I. Results of the �rst set of simulations based on 1000 data sets.

Sample True Mean Empirical Std 95 per cent
size Index value estimation std.err dev. Coverage

25 �c(�) 0.968 0.965 0.030 0.031 0.943
�I1 0.800 0.780 0.060 0.068 0.915
�I2 0.788 0.765 0.063 0.074 0.901
�I3 0.777 0.754 0.065 0.071 0.912
�c(Y ) 0.763 0.741 0.055 0.061 0.912

50 �c(�) 0.968 0.966 0.020 0.021 0.937
�I1 0.800 0.792 0.042 0.043 0.944
�I2 0.788 0.782 0.044 0.046 0.925
�I3 0.777 0.754 0.046 0.071 0.912
�c(Y ) 0.763 0.755 0.039 0.041 0.933

100 �c(�) 0.968 0.966 0.014 0.015 0.935
�I1 0.800 0.796 0.030 0.032 0.924
�I2 0.788 0.783 0.031 0.034 0.934
�I3 0.777 0.775 0.032 0.034 0.938
�c(Y ) 0.763 0.759 0.028 0.031 0.928

400 �c(�) 0.968 0.967 0.007 0.007 0.950
�I1 0.800 0.799 0.015 0.015 0.953
�I2 0.788 0.787 0.016 0.016 0.951
�I3 0.777 0.777 0.016 0.017 0.951
�c(Y ) 0.763 0.762 0.014 0.014 0.949

stenosis of both the left and right arteries for 55 subjects. One would like to estimate intra-,
inter-method and total agreement between the three methods. Because there are also raters
involved, one may also like to �nd out intra-, inter- and total agreement between the three
raters. However, because there is no replications made by the raters, we can only assess total
agreement between the three raters. We make the assumption that the three rater’s readings
using the same method are replications of the method. This is supported by previous analyses.
According to the results in Reference [4], the accuracy component of the OCCC among the
three raters using the same method is very high (¿0:96). Therefore, it is reasonable to treat
readings from the three raters of each method as replications of each method. This assumption
is also supported by scatter plots (not shown) where readings by the three raters using the
same method scatter evenly around the 45◦ line. When we treat the readings from the three
raters using a particular method as the replications for this method, the total agreement between
the three raters using a particular method is in fact the intra-method agreement. Therefore,
we only assess intra-, inter-method and total agreement between the three methods here.
Table III show the points estimates using the GEE and mixed model approaches and 95 per

cent CI based on the GEE approach for left and right arteries separately. Estimates based on
GEE and MIXED procedure are very similar indicating that the data are probably normally
distributed. Therefore, our discussion of results are based on the GEE approach here where
standard errors are the by-product of the approach.
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Table II. Results of the second set of simulations based on 1000 data sets.

Sample True Mean Empirical Std 95 per cent
size Index value estimation std.err dev. Coverage

25 �c(�) 0.586 0.567 0.134 0.142 0.904
�I1 0.500 0.473 0.108 0.121 0.906
�I2 0.500 0.466 0.108 0.125 0.878
�I3 0.500 0.470 0.107 0.115 0.908
�c(Y ) 0.295 0.277 0.079 0.086 0.882

50 �c(�) 0.586 0.577 0.096 0.100 0.925
�I1 0.500 0.489 0.078 0.081 0.942
�I2 0.500 0.490 0.078 0.084 0.919
�I3 0.500 0.487 0.079 0.082 0.924
�c(Y ) 0.295 0.288 0.060 0.061 0.922

100 �c(�) 0.586 0.580 0.069 0.75 0.929
�I1 0.500 0.495 0.056 0.060 0.926
�I2 0.500 0.493 0.057 0.057 0.946
�I3 0.500 0.496 0.057 0.057 0.941
�c(Y ) 0.295 0.292 0.043 0.047 0.919

400 �c(�) 0.586 0.583 0.035 0.035 0.946
�I1 0.500 0.498 0.029 0.028 0.961
�I2 0.500 0.498 0.029 0.029 0.953
�I3 0.500 0.498 0.029 0.030 0.947
�c(Y ) 0.295 0.293 0.022 0.022 0.944

Table III. Results for carotid stenosis data.

Left artery Right artery

Estimates 95 per cent CI Estimates 95 per cent CI
Index GEE MIXED GEE GEE MIXED GEE

Intra-method agreement
IA 0.882 0.884 (0.782, 0.982) 0.915 0.916 (0.866, 0.964)
2D 0.621 0.626 (0.456, 0.786) 0.604 0.610 (0.443, 0.765)
3D 0.614 0.647 (0.443, 0.785) 0.616 0.621 (0.453, 0.779)

Inter-method agreement
Among 3 methods 0.763 0.758 (0.608, 0.918) 0.848 0.847 (0.736, 0.960)
IA vs 2D 0.755 0.754 (0.553, 0.957) 0.846 0.845 (0.746, 0.946)
IA vs 3D 0.624 0.614 (0.381, 0.867) 0.765 0.764 (0.573, 0.957)
2D vs 3D 0.925 0.919 (0.796, 1.000) 0.943 0.939 (0.814, 1.000)

Total agreement
Among 3 methods 0.533 0.539 (0.386, 0.680) 0.594 0.597 (0.459, 0.729)
IA vs 2D 0.557 0.559 (0.383, 0.731) 0.634 0.636 (0.497, 0.771)
IA vs 3D 0.464 0.468 (0.266, 0.662) 0.575 0.577 (0.398, 0.751)
2D vs 3D 0.573 0.587 (0.434, 0.712) 0.576 0.579 (0.437, 0.715)
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Overall, the total agreement among the three methods is poor (0.533 and 0.594 for left
and right arteries, respectively). This is due to moderate inter-method agreement (0.763 and
0.848 for left and right arteries, respectively) and fair intra-method agreement (about 0.61–
0.62) using the MRA technology. The intra-method agreement using the IA method is high
(0.882 and 0.915 for left and right arteries, respectively). By examining the pairwise inter-
method agreement, we note that the moderate inter-method agreement is due to the moderate
agreement between the methods using di�erent technology (IA vs MRA 2D or IA vs MRA
3D) (pairwise inter-method agreement ranging from 0.624 to 0.846). The pair inter-method
agreement between the MRA 2D and MRA 3D method is actually high (0.925 and 0.943 for
left and right arteries, respectively) indicating that there is not major true di�erences between
the methods using the MRA technology. If one needs to choose one of the two MRA methods,
the MRA 2D may be preferred because it may be easier to produce and to examine 2D images
than the 3D images. In summary, we observe disagreement among the two MRA methods and
the IA method. This is mainly due to disagreement among raters using the MRA methods.
Therefore, training is needed for raters who use the MRA methods in order to improve the
agreement between the MRA methods and the IA methods. There is no di�erence among the
two MRA methods.
We observe that the inter-method agreement of the two methods using the same MRA

technology is higher than the inter-method agreement of the two methods using di�erent
technology. It is of interest to test whether the di�erence is signi�cant. We extend our approach
to incorporate covariate impact on agreement in the next section which allows us to carry out
such a test.

6. AN EXTENSION

If an agreement study also contains information on covariates, such as age, gender, rater
experience, etc. then it may be of interest to investigate the direction of association between
the covariates and the agreement index so that we can better understand the impact of the
covariates on the measurement process. The proposed GEE approach can be easily extended
to incorporate covariates. Let Yi (i=1; : : : ; N ) be the vector of readings for subject i with
corresponding matrix Xi for p covariates. The covariates can either be subject-speci�c or
method-speci�c or both. First, we model the marginal mean of Yi by E(Yi)=�i(	)=Xi�.
The parameter estimates of � are obtained by GEE as

N∑
i=1
D′
i1V

−1
i1 (Yi• − �i(�))= 0

where Di1 = @�i=@� and Vi1 is the working covariance matrix. In the second and third sets of
estimating equations, we estimate �2∗ and �

2. For simplicity, we assume that �2∗ and �
2 do

not depend on covariates. The second and third sets of estimating equations are as follows:

N∑
i=1
D′
i2V

−1
i2 (Ui − �2) = 0

N∑
i=1
D′
i3V

−1
i3 (Wi − g(�(�); �2)) = 0
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The fourth set of estimating equations is to model the marginal mean of Zi=(Yi1•Yi2•; Yi1•
Yi3•; : : : ; Yi(J−1)•YiJ•)′ as a function of covariates to evaluate the covariates’ impact on agree-
ment. Note that E(Zijj′)=�∗j�∗j′ +�

�
jj′�j�j′ =�∗j�∗j′ +(12)�jj′�c(jj′)(�), where �jj′ = �

2
j +�

2
j′ +

(�j −�j′)2. We use Fisher’s Z-transformation to model the pairwise inter-CCCs, �c(jj′)(�), as:
(1=2) log(1 + �c(jj′)(�))=(1 − �c(jj′)(�))=Qijj′�. where Qijj′ includes a subset of covariates
of Xi as well as indicator variables for pair (j; j′). Therefore, the fourth set of estimating
equations is to obtain the parameter estimates of � by modelling the marginal mean of Zi

N∑
i=1
D′
i4V

−1
i4 (Zi − h(�; �2; �))= 0

We apply the above extension to the carotid stenosis example to test whether the inter-
method agreement between two methods (MRA 2D vs MRA 3D) using the MRA technology
is di�erent from the inter-method agreement between two methods using di�erent technology
(IA vs MRA 2D and IA vs MRA 3D). We used the following design matrices for X and
Q. X is a 3 × 3 design matrix formed by intercept term and two indicator variables for the
MRA 2D and MRA 3D methods, respectively. Let �∗=(�∗1; �∗2; �∗3)′ be the means of IA,
MRA 2D, and MRA 3D readings, respectively, then we have

�∗=X� =




	0
	0 + 	1
	0 + 	2




Q is a matrix formed by intercept term and two indicator variables for method pairs of (IA,
MRA 2D) and (IA, MRA 3D) respectively. We then have




1
2
log

1 + �c12(�)
1− �c12(�)

1
2
log

1 + �c13(�)
1− �c13(�)

1
2
log

1 + �c23(�)
1− �c23(�)



=Q� =



�0 + �1

�0 + �2

�0




To test if the inter-method agreement of MRA 2D vs MRA 3D is signi�cantly di�erent from
that of IA vs MRA 2D and from that of IA vs MRA 3D, we test H0 : �1 = 0 and H0 : �2 = 0,
respectively.
The GEE estimates of � are (1:62;−0:64;−0:89)′ and (1:76;−0:52;−0:75)′ for left and right

arteries, respectively. The p-value for testing H0 : �1 = 0 is 0.143 and 0.222 for the left and
right artery, respectively, indicating that the inter-CCC between methods of MRA 2D and
MRA 3D is not signi�cantly higher than the inter-CCC between method IA and MAR 2D.
The p-value for testing H0 : �2 = 0 is 0.042 for the left artery and 0.101 for the right artery.
Therefore, the inter-method agreement of the two MRA methods is signi�cantly higher than
that of the IA and MRA 3D methods for the left artery.
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7. DISCUSSION

In this paper, we have proposed indices for assessing the intra, inter and the total agreement
with replicated readings produced by several methods, where the methods can be either di�er-
ent technologies, instruments, or human observers. We evaluated the inter-method agreement
based on the method’s true readings. We used the ICC of a one-way ANOVA model to assess
the intra-method agreement and we developed the total agreement index based on the observed
readings. Furthermore, we investigated the relationship between the total agreement index and
intra, inter agreement indices. These indices help to identify whether the disagreement is due
to either intra-method variability or inter-method variability or both. Therefore, these indices
provide directions on how to improve agreement among multiple methods. We proposed the
GEE approach for estimation and inference of these indices. We evaluated the performance
of GEE through simulation studies and we used the data from a carotid stenosis study to
illustrate the use of the proposed methods. We also presented an extension of evaluating the
covariates’ e�ect on agreement. We note that the mixed model approach can be used to obtain
estimates from SAS software if the data is normal. However, inference using the mixed model
approach will require bootstrapping and it is not obvious how to incorporate covariates e�ects
on the correlation parameters. The GEE approach is attractive due to its easy implementation
when there are covariates.
We used CCC-type indices to assess inter-method and total agreement because these indices

do not require exchangeable assumption that is needed in ICC-type indices based on classical
test theory [11]. Extending the classical test theory, generalizability theory (GT) [12, 13] has
been developed to assess measurements in education and psychology. Although the coe�cients
de�ned in the context of GT also do not require the exchangeable assumption, they depend
on explicit speci�cation of ANOVA models. It is possible to extend the de�nitions of these
coe�cients using the GT concepts without the ANOVA model assumption and then compare
these coe�cients to the CCC-type indices. This is beyond the scope of this paper and it
is a topic for future research. For a special case where there are J �xed methods and no
replications, if we further assume that the readings follow a two way ANOVA model without
interaction where subject is treated as random e�ect and method is treated as �xed e�ect, then
the CCC (total agreement) is the same as one version of ICC (case 3A in Reference [14])
and the coe�cient of dependability under GT.
Dunn and Roberts [15] developed a modelling approach for method comparison data. Their

approach di�ers from ours in two aspects. First, Dunn and Roberts [15] made the assumption
that the true value from one method is linearly related to the true value of the other method
at the subject level. This assumption will impose restriction of ��jj′ =1 in our context. Second,
Dunn and Roberts used the ratio of the precision to compare inter-method agreement. Based
on the de�nition, this ratio is in fact an index of partial total agreement. The ratio is a
measure of total agreement because it is de�ned at the level of observed readings (noting that
intra-method variabilities are used in the formula of this ratio). It is only a partial measure
of total agreement because only the scale shift (	 parameter in their paper), no location shift
(� parameter in their paper) between the true values is taken into account in the de�nition.
Our research focuses on the �xed methods only. In practice, the methods may be considered

as a random sample from a large population. This will be a topic for future investigation.
Haber et al. [16] have developed a new index, coe�cient of inter-observer variability (CIV),
for evaluating observer agreement. The main di�erence between CIV and CCC-type indices
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is that the two coe�cients are scaled di�erently. The CIV does not depend on the between-
subject variability, and it does not depend on whether the raters are considered �xed or
random. It would be of future interest to study the relationship between the CIV and the
CCC-type indices.
To design an agreement study with replications, one will need to decide on the optimal

choices of number of subjects and number of replications. This is the topic for our future
research.
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