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Coefficients of agreement for fixed observers
Michael Haber Department of Biostatistics, Rollins School of Public Health, Emory
University, Atlanta, GA, USA and Huiman X Barnhart Department of Biostatistics and
Bioinformatics, Duke Clinical Research Institute, Duke University, PO Box 17969, Durham,
NC 27715, USA

Agreement between fixed observers or methods that produce readings on a continuous scale is usually
evaluated via one of several intraclass correlation coefficients (ICCs). This article presents and discusses
a few related issues that have not been raised before. ICCs are usually presented in the context of a
two-way analysis of variance (ANOVA) model. We argue that the ANOVA model makes inadequate
assumptions, such as the homogeneity of the error variances and of the pairwise correlation coefficients
between observers. We then present the concept of observer relational agreement which has been used in
the social sciences to derive the common ICCs without making the restrictive ANOVA assumptions. This
concept did not receive much attention in the biomedical literature. When observer agreement is defined
in terms of the difference of the readings of different observers on the same subject (absolute agreement),
the corresponding relational agreement coefficient coincides with the concordance correlation coefficient
(CCC), which is also an ICC. The CCC, which has gained popularity over the past 15 years, compares
the mean squared difference between readings of observers on the same subject with the expected value
of this quantity under the assumption of ‘chance agreement’, which is defined as independence between
observers. We argue that the assumption of independence is unrealistic in this context and present a new
coefficient that is not based on the concept of chance agreement.

1 Introduction

Commonly used coefficients for evaluation of agreement between observers making
readings on a continuous variable are versions of the intraclass correlation coefficient
(ICC). Over the past four decades, several review papers1−4 presented summaries of the
different types of ICCs and offered guidelines for the selection of the most appropriate
ICC in a given situation. Despite this, there are still issues related to the definition and
interpretation of coefficients of observer agreement that need clarification. In this article,
we focus on two issues that, to our knowledge, have not been discussed in earlier works.
We assume that the observers are fixed and that each observer makes at least one reading
on each subject.

The first issue relates to the adequacy of the analysis of variance (ANOVA) model used
to define coefficients of agreement between fixed observers. ICCs are usually defined in
terms of variance components in a mixed two-way ANOVA model (random subjects,
fixed observers). In Section 3, we will argue that this model makes assumptions that
may not be appropriate when evaluating agreement between fixed observers, such as
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homogeneity of observer error variances and of interobserver correlations. Therefore,
we present in Section 4 an alternative approach that, to our knowledge, has received
very little attention in the biomedical literature. This approach is based on the concept
of relational agreement which distinguishes different types of agreement. The most
common type of agreement, at least in the biomedical sciences, is absolute agreement
which means that the readings of different observers on the same subject should be
identical, or at least close to each other. However, there are other types of relative
agreement where the readings of one observer are only expected to follow a function of
a specific type of those of another observer. For example, additive agreement between
two observers means that each reading of the second observer can be obtained from the
corresponding reading of the first by adding a constant. In Section 4, we will present a
unified approach allowing different types of functional relationships and we will show
that different types of agreement lead to different versions of the ICC. These coefficients
of relational agreement are not based on the ANOVA model. Instead, they are defined
in terms of the expected mean squared difference between readings made by pairs of
observers on the same subject divided by its value under ‘chance agreement’. Chance
agreement is defined as independence (and hence lack of correlation) between observers.
However, correlation and agreement are two different concepts. For example, consider
two teachers who assign their students grades on a scale from 0 to 10 (Figure 1). In
Figure 1(a), the grades are perfectly correlated while the absolute agreement is poor.
In Figure 1(b), there is a good agreement while the correlation between the teachers

Figure 1 (a) Perfect correlation, poor agreement.
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Figure 1 Continued. (b) Zero correlation, good agreement.

is zero. Therefore, the second issue discussed in this article (Section 5) relates to the
appropriateness of this correction for chance agreement. We will argue that chance
agreement should not be equated with independence and present in Section 6 a recently
developed coefficient of interobserver agreement whose definition is not related to the
concept of chance agreement.

Before we discuss the issues presented earlier, we provide in Section 2 a brief overview
of the two commonly used coefficients of agreement for fixed observers. Both coefficients
are versions of the ICC.

2 Definitions of ICCs for fixed observers

All the articles cited previously agree that the choice of an ICC depends on the type
and origin of the data. Here, we will assume that each of J observers makes at least
one observation on each of N subjects. We also assume that the observers are fixed, in
the sense that we are only interested in agreement between these observers (rather than
assuming that they represent a sample drawn from a large pool of observers). In this
case, the two-way mixed-effect ANOVA model is commonly used to define the ICCs:

Yij = µ + αi + βj + γij + εij (1)
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This model presents a reading Yij of observer j on subject i as the sum of a random
subject effect (αi), a fixed observer effect (βj), a random subject–observer interaction
effect, (γij) and a random error εij. As we will see later, it is important to include a
nonzero interaction effect, even though the variance of this effect cannot be estimated
independently of the error variance unless observers make more than one reading on
each subject. The sum of the interaction and error variances is always estimable. We
denote the variances of the random effects associated with subjects, interaction and
error by σ 2

S , σ 2
SO and σ 2

E, respectively. In addition, we will denote the variability among
the (fixed) observers’ effects by s2

O = ∑
j β

2
j /(J − 1).

The classical definition of the ICC for this two-way model was given by Bartko1:

ICCB = Cov(Yij, Yij′)
√

(Var(Yij) · Var(Yij′)
= σ 2

S − σ 2
SO/(J − 1)

σ 2
S + σ 2

SO + σ 2
E

(2)

for j′ �= j. Actually, the expression given in Bartko1 does not include the ‘correction’
−σ 2

SO/( J − 1) in the numerator of the right-hand side of Equation (2); however, in a
later paper Bartko5 pointed out that this correction should be included. This definition
raises two questions that are not answered neither in Bartko’s paper nor in most papers
that present the identities in Equation (2) as a definition of the ICC:

• The first equality in Equation (2) states that ICCB is identical to the ordinary product
moment correlation coefficient (PMCC) between Yij and Yij′ . What is the conceptual
difference between Bartko’s ICC and the PMCC? If we calculate ICCB from the
right-hand side of Equation (2), we usually obtain a number that is different from
the PMCC. For example, if the readings of two observers on three subjects are (0,4),
(5,5) and (10,6), then ICCB = 0.38 and PMCC = 1.00.4

• Suppose that there are at least three observers. The right-hand side of Equation (2)
does not depend on which pair of observers is used, whereas the middle expres-
sion allows a different coefficient for each pair. How can these two expressions be
equivalent?

The answer to both questions is the same: the two expressions in Equation (2) are
equivalent only under the two-way model which assumes, among other things, that all
the pairwise PMCCs are equal. Thus, the right-hand side of Equation (2) is the common
correlation coefficient between two observers under the restrictions imposed by the two-
way model. In the following section, we will explain why the two-way model may not
be appropriate for the case of fixed observers.

From a practical point of view, the main question related to Bartko’s definition [Equa-
tion (2)] is the following: what does ICCB actually measure? As the right-hand side of
Equation (2) does not include the variability between observers, it appears that this form
of the ICC is not an appropriate measure of absolute agreement, that is, of the magnitude
of the differences between the readings of different observers on the same study subject.

An answer to the last question can be found in McGraw and Wong.4 They state that
ICCB attains its maximum value (one) if and only if the differences between the readings
of any two observers are fixed across subjects, that is, for every pair of observers ( j �= j′),
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Yij − Yij′ does not depend on i. However, if the ratio of the readings of two observers is
fixed, then ICCB may be considerably less than one. For example, for the readings (1,4),
(2,8) and (3,12), ICCB = 0.47. Thus, this form of the ICC is appropriate for measuring
additive agreement (McGraw and Wong4 labeled it as the consistency ICC).

To assess absolute agreement, McGraw and Wong suggested the correction of ICCB
by including the variability among the observers’ main effects, s2

O, in the denominator.
Thus, they defined the agreement ICC as:

ICC(agreement) = σ 2
S − σ 2

SO/(J − 1)

σ 2
S + S2

O + σ 2
SO + σ 2

E
(3)

Another commonly used coefficient of absolute agreement is the concordance corre-
lation coefficient (CCC), based on the chance-corrected expectation of the squared
difference between the readings of two observers on the same subject. The CCC is usually
attributed to Lin,6 though this coefficient had been mentioned earlier by Krippendorff7

and Zegers.8 Barnhart et al.9 extended the definition of the CCC to the case of multiple
observers as follows:

CCC = 1 − Ei{∑j′>j(Yij − Yij′)2}
Ei{∑j′>j(Yij − Yij′)2 when Y1, Y2, . . . , YJ are independent} (4)

where
∑

j′>j stands for
∑J−1

j=1
∑J

j′=j+1. Barnhart et al.9 showed that for the two-way
model without interaction, the CCC is identical to the McGraw–Wong agreement ICC
(3). Song10 showed that the CCC is equivalent to the agreement ICC under the general
two-way model with interaction. We will revisit the CCC in Sections 4 and 5, but we
first examine the restriction imposed by the assumption that the observations follow a
two-way ANOVA model.

3 Suitability of the two-way ANOVA model in assessing agreement
between fixed observers

As we mentioned earlier, most approaches to assess observer agreement between fixed
observers assume a two-way mixed ANOVA model (1) (the derivation of the CCC is
not based on this model). Hence, it might be of interest to examine the suitability of
the ANOVA model to the evaluation of agreement between fixed observers. Because we
do not consider statistical inference in this article, we will not question the assumption
of normality. Without any distributional assumptions, the two-way model requires that
1) all the observers have the same error variance and that 2) the correlation coefficients
between all pairs of observers are the same. The first assumption implies that the error
variance of all the observers is the same, which may not be true. The second assumption
regarding equality of all pairwise correlations is even more questionable, as the corre-
lation between two experienced observers is likely to be much higher than that between
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an experienced and a novice observer. This is particularly disturbing because the ICCs
are defined as types of correlation coefficients. It is also important to point out that
the two-way ANOVA model without interaction assumes, among other things, that the
differences between values assigned by two observers to each subject are fixed, apart
from a random error. This assumption is unrealistic in many cases.

It should be pointed out that new multilevel linear models that allow estimation of
variance components without the restrictive ANOVA assumptions are now available.
These models can be fitted using the gllamm routine in the Stata software package.

Because of the aforementioned concerns regarding the appropriateness of two-way
ANOVA models for observer agreement data, we looked for coefficients of agreement
that are not based on these models. In the following section, we describe an alternative
framework that can be used to derive coefficients of observer agreement. Two of these
coefficients are equivalent to ICCB and the CCC, respectively, whereas a third coefficient
is the mean of all the pairwise PMCCs. A different and more general model for observer
agreement data is presented in Section 6.

4 Observer relational agreement

The approach we are going to present for defining and measuring different types of
observer agreement is based on the concept of observer relational agreement. This
approach was introduced in the social sciences literature, but it has not received much
attention in the biomedical/health sciences literature. The concept of relational agree-
ment was introduced by Stine11 for the case of two observers and generalized by Fagot12,13

to any number of observers. It is based on the notion that prior to evaluating agreement,
one has to define the appropriate scale of agreement. For example, if observers are
expected to report the same value for each subject, then the corresponding scale is abso-
lute agreement. If observers are allowed to differ from each other by a fixed value, but
they are penalized for differences in their variances, then we are interested in agreement
on the additive scale. Similarly, one may define agreement on the multiplicative, linear
and ordinal scales. The most commonly used scale in the biomedical sciences is the abso-
lute scale, as we are usually interested in determining the exact value of the quantity of
interest for each subject.

In order to quantify this approach, we need to define a generic measure of agreement
and a class of admissible transformations. A class of transformations is admissible with
respect to a given scale of agreement when the measure of agreement attains its maximum
value, that is, it indicates perfect agreement, if and only if the readings of one observer can
be obtained from the corresponding readings of a second observer via a transformation
from this class. For example, the measure of agreement on the additive scale should attain
its maximum when the readings of one observer can be obtained from those of another
by adding a constant. Therefore, the class of admissible transformations consists of all
the additive transformations, T(x) = x + a. Similarly, the admissible transformations
for absolute, multiplicative and linear agreements are T(x) = x, T(x) = bx and T(x) =
a + bx, respectively. As we want to quantify observer agreement, it is reasonable to limit
ourselves to monotonically increasing transformations. Hence, for the multiplicative and
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linear transformations, we require b > 0. The class of admissible transformations for
ordinal agreement consists of all the monotonically increasing transformations.

It is important to point out that the scale of agreement does not have to be related
to the scale of measurements. For example, suppose that the observed variable is the
weight of an object in pounds, which is considered as measured on a ratio scale (as
there is a unique well-defined zero). Then, the scale of agreement does not have to be
multiplicative, as we usually want the actual measurements to be very close to each other,
rather than allowing one measurement to be obtained from the other by multiplying by
an arbitrary constant. In other words, we will be interested in absolute agreement, even
though the scale of measurements is a ratio scale.

The second ingredient of the relational agreement approach is a function that deter-
mines the extent of agreement between observers. Usually it is required that the values
of the function vary between −1 and 1, with 1 indicating perfect agreement, 0 indicating
no agreement and −1 indicating ‘perfect’ negative agreement. The agreement function
will be denoted by g. Consider an admissible transformation T (corresponding to a
pre-determined scale of agreement) and denote Tij = T(Yij). For the general case of J
observers, Fagot12 extended the earlier works by Zegers and ten Berge14 and Stine11 and
proposed the following agreement function to determine the magnitude of agreement
between T1, . . . , TJ, where Tj = T(Yj):

g(T1, . . . , TJ) = 1 −
∑

i
∑

j′>j(Tij − Tij′)2

(J − 1)
∑

i
∑

j T2
ij

(5)

Thus, 1 − g is the average Euclidean distance between the transformed readings of pairs
of observers divided by a normalizing factor. Zegers and ten Berge14 proposed the use of
a specific transformation from each of the first four classes. These transformations, which
are referred to as uniformed transformations, are listed in Table 1. In that table, Ȳj and
S2

j are the sample mean and variance, respectively, corresponding to the original readings
of observer j. For the ordinal scale, Fagot13 defined the uniformed transformation for
Yij as the rank of that observation when the readings of observer j are ranked from
smallest to largest. The various coefficients of relational agreement can be obtained by
substituting Tijs from Table 1 into Equation (5).

Table 1 Uniformed transformations for five scales of agreement

Scale of agreement Uniformed transformation for Yij

Absolute Tij = Yij

Additive Tij = Yij − Ȳj

Multiplicative Tij = Yij /
√∑

i Y 2
ij /N

Linear Tij = (Yij − Ȳj )/Sj

Ordinal Tij is the rank of subject i for observer j
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Zegers8 argued that the agreement function has to be corrected for ‘agreement by
chance’. He defined the chance-corrected agreement function as:

h = g − gc

1 − gc
(6)

where gc is the expected value of g under chance agreement, which he interpreted as inde-
pendence of the observers. It is calculated as the mean of g over N! permutations of the
readings of one observer, though the readings of the other observer remain fixed. Fagot12

gave a general expression for the chance-corrected agreement function, h(T1, . . . , TJ),
which is obtained from Equations (5) and (6). For each of the first four scales of agreement
in Table 1, Fagot gave an expression for h in terms of the sample moments of Y1, . . . , YJ.
The expressions for absolute, additive and linear chance-corrected agreement coefficients
are as follows:

hAB = 2
∑

j′>j Sjj′

( J − 1)
∑

j S2
j + ∑

j′>j(Ȳj − Ȳj′)2
(7)

hAD = 2
∑

j′>j Sjj′

( J − 1)
∑

j S2
j

(8)

hL = meanj′>j(rjj′) (9)

where Sjj′ and rjj′ are the sample covariance and PMCC for the pair (Yj, Yj′). The expres-
sion for hM, the chance-corrected coefficient of multiplicative agreement, is somewhat
more complicated. For ordinal agreement, the corresponding coefficient is equivalent to
the chance-corrected Kendal coefficient of concordance.13

We can substitute the population moments in the expressions for h by the correspond-
ing sample moments and obtain population values (parameters) for the chance-corrected
coefficients of relational agreement. We denote the mean and variance of Yj by µj and σ 2

j ,
respectively. The PMCC of Yj and Yj′ is denoted by ρjj′ and the population covariances
are σjj′ = ρjj′σjσj′ . The chance-corrected coefficients of absolute, additive and linear
agreements are as follows:

ηAB = 2
∑

j′>j σjj′

( J − 1)
∑

j σ
2
j + ∑

j′>j(µj − µj′)2
(10)

ηAD = 2
∑

j′>j σjj′

( J − 1)
∑

j σ
2
j

(11)

ηL = meanj′>j(ρjj′) (12)

The expression for the coefficient of multiplicative agreement is again somewhat more
complicated.
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How are these relational agreement coefficients related to the ICCs? First, the coeffi-
cient of absolute agreement equals to the CCC which, in turn, equals to the agreement
ICC [Equation (3)] in terms of the parameters of the two-way model. Second, the coeffi-
cient of additive agreement equals to ICCB.12 Finally, the coefficient of linear agreement
is the mean of all the pairwise PMCCs. Hence, we conclude that:

1) The two most commonly used ICCs in the case of fixed observers, namely
Equations (2) and (3), can be derived from the concept of observer relational
agreement and the agreement function (5), which is based on the distances between
pairs of observers.

2) the PMCC is a valid coefficient of agreement when we define agreement as a linear
association between observers.

3) these forms of the ICC can be derived and estimated without the assumption of a
two-way ANOVA model.

4.1 Examples
To illustrate the three coefficients of relational agreement [Equations (7)–(9)], we use

data from a study designed to determine the suitability of magnetic resonance angiogra-
phy (MRA) for noninvasive screening of carotid artery stenosis, compared with invasive
intra-arterial angiogram (IA). The main interest is in comparing two MRA techniques,
two-dimensional (MRA-2D) and three-dimensional (MRA-3D) time of flight, to the IA,
which is considered the ‘gold standard’. In this example, the three screening methods
are considered as the ‘observers’. Readings were made by three raters using each of the
three methods to assess carotid stenosis on each of 55 patients. Separate readings were
made on the left and right carotid arteries. The data is presented in the appendix and
can be copied from our website at: www.sph.emory.edu/observeragreement/data.htm.

In this section, we use the means of the readings made by the three raters on each sub-
ject using each method. The various coefficients of agreement are presented in Table 2.
Obviously, the main interest in this example is in absolute agreement; the values of the
additive and linear agreement coefficients are included for illustrative purposes only.

Table 2 Coefficients of relational agreement for the carotid
stenosis data

Methods Coefficient of agreement

Absolute Additive Linear

Left artery
All three methods 0.668 0.683 0.683
IA, MRA-2D 0.675 0.685 0.685
IA, MRA-3D 0.556 0.582 0.582
MRA-2D MRA-3D 0.773 0.780 0.780

Right artery
All three methods 0.743 0.772 0.773
IA, MRA-2D 0.762 0.815 0.816
IA, MRA-3D 0.689 0.723 0.724
MRA-2D MRA-3D 0.778 0.779 0.779
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As expected, the absolute agreement coefficient is always the smallest, followed by addi-
tive and linear coefficients. As to the issue of which of the two MRA methods agrees
better with the IA method, we see from Table 2 that for both the left and right carotid
arteries, the absolute agreement coefficient of the MRA-2D and IA readings is greater
than that of the MRA-3D and IA readings (0.675 versus 0.556 for the left artery and
0.762 versus 0.689 for the right artery).

Although in this example the three relational agreement coefficients do not differ
substantially, other studies found more notable difference between the absolute and
additive coefficients. For example, Muller and Buttner3 present results from a study
comparing two observers assessing cardiac output of 23 ventilated patients. For their
data, the absolute agreement coefficient (CCC) is 0.751, the additive coefficient (Shrout
and Fleiss’s ICC for Model C) is 0.918 and the linear agreement coefficient (PMCC) is
0.924. Shrout and Fleiss2 analyzed ratings of four judges on six subjects. The absolute,
additive and linear agreement coefficients for their data are 0.284, 0.715 and 0.760,
respectively.

Although it seems that these coefficients of relational agreement are appropriate for
defining the extent of agreement between fixed observers, they suffer from a problem,
which is discussed in the following section.

5 On the correction for chance agreement

The sample coefficients of relational agreement [Equations (7)–(9)] and the correspond-
ing parameters [Equations (10)–(12)] are based on comparing the actual value of an
agreement function with its expected value when the observers are independent (and
therefore uncorrelated), because agreement by chance is interpreted as independence.
As we stated earlier, lack of agreement does not imply, neither is it implied by lack of cor-
relation. For the coefficients of additive and linear agreement, this does not constitute a
problem, as the corrected and uncorrected coefficients are identical.8 However, the coef-
ficient of absolute agreement (CCC) is affected by the correction for chance agreement
and therefore it may sometimes attain unexpected values. We will illustrate this using
an example given by Zegers.15 Suppose that two teachers assign grades (on a scale from
0 to 10) to each of four students and that the grades they assign to these students are
(8,8), (8,9), (9,8), (9,9) [Figure 1(b)] Most of us would say that the agreement of these
teachers is quite good. However, the CCC for this data is zero. This happens because the
PMCC for these scores is zero and the absolute value of the CCC never exceeds that of
the PMCC.6 In other words, the correction for chance agreement used in the definition
of the CCC leads to the misleading conclusion that lack of correlation always implied
lack of agreement.

This unexpected behavior of the CCC results from the erroneous notion that agree-
ment by chance means independence (which implies lack of correlation) between
observers. Because the observers measure the same quantity on the same subject, it
is highly unlikely that their readings will be independent. Of course, when each observer
uses an independent random number generator to produce a ‘reading’ that is unrelated
to the subject’s true value, then the observers are independent, but this is not what we
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perceive as agreement by chance. To us, agreement by chance means that observers are
independent given the fact that they evaluate the same subject. In other words, we expect
observers to agree simply because they observe the same subject. If this is the only source
of dependence, then one may argue that the observers agree ‘by chance’. If the level of
agreement is beyond what is expected owing to the common value of the ‘true’ quantity,
for example, because the observers use the same technique or because they have received
the same training (or because one of them is not blind to the readings of another), then
one can expect that their agreement is beyond chance agreement. In the following sec-
tion, we present an alternative coefficient of absolute agreement that does not involve
the dubious concept of chance agreement.

6 A new coefficient of interobserver agreement

From the previous sections, it is evident that a coefficient of absolute agreement between
observers should be based on the mean squared difference between the readings of
pairs of observers on the same subject. In other words, we agree that the numerator in
expression (3) for the CCC, that is, W2 = Ei{∑j′>j(Yij − Yij′)2}, is a valid measure of
agreement, where a small value of W2 indicates good agreement. The problem arises
when we try to standardize W2 so that we end up with a coefficient whose value is
unity for ‘maximum agreement’ and zero for ‘lack of agreement’. The standardization
in the CCC is based on the value of W2 in the case of lack of agreement. Because of the
difficulties in defining lack of agreement, we decided to move to the opposite end of the
agreement spectrum and use maximum agreement as a basis for standardization of W2.
How do we define maximum agreement? It seems that requiring Yi1 = Yi2 = · · · = YiJ
for every i, that is, W = 0, would be too strict, as we should allow for observers’ random
errors. Therefore, we propose the following simple model:

Yij = µij + eij, E(eij) = 0, Var(eij) = σ 2
e,j (13)

Here, µij can be regarded as the mean value (true value) that observer j would assign
to subject i if the observer could make an infinite number of readings on this subject.
The term eij is a random error, and the variance of this error, σ 2

e,j, represents the vari-
ability among replicated measurements that observer j makes (or would make) on this
subject, that is, the intraobserver variability. We define maximum agreement as the mini-
mum of W2 over range of the true values µij under model (13). Haber et al.16 showed
that the minimum is attained if and only if µi1 = µi2 = · · · = µiJ for all i. Therefore,
we propose the following coefficient of disagreement:

δ = Ei{∑j′>j(Yij − Yij′)2}
Ei{∑j′>j(Yij − Yij′)2 when µi1 = · · · = µiJ for every i}

The reciprocal of this coefficient, ψ = 1/δ, is our proposed new coefficient of absolute
agreement. It varies between 0 and 1, with ψ = 1 indicating maximum agreement subject
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to model (13). The other extreme case, ψ = 0, corresponds to a limiting situation where
the variability among µi1, . . . , µiJ approaches infinity. In addition, ψ = 0 when there
is no error, that is, σ 2

e,j = 0 for all j. This is reasonable because under σ 2
e,j ≡ 0, each

observed value Yij equals to the corresponding true value µij, and hence, any nonzero
value of W2 indicates disagreement for at least one pair of observers.

Haber et al.16 also showed that ψ can be expressed as 1 − τ 2/(τ 2 + σ 2
e ), where τ 2 is

the mean (over subjects) of
∑

j(µij − µ̄i)
2, and σ 2

e is the average (over observers) of the
error variances σ 2

e,j. In other words, ψ is based on the ratio of the interobserver variability
to the total observer variability. Therefore, ψ is a measure of interobserver agreement,
whereas the coefficients discussed earlier measure the total observer agreement. The
coefficient ψ can be estimated from the observed inter- and intraobserver variabilities.16

Barnhart et al.17 proposed CCC-like coefficients of interobserver and total observer
agreements.

The main drawback of the approach presented in this section is the necessity to
estimate the intraobserver variability. This variance component is best estimated when
each observer makes two or more replicated measurements of each subject. When making
replicated observations, it is important to make sure that the subjects’ true values do
not change between replications. This condition is satisfied when the subjects are x-ray
slides, blood samples or verbal responses to an interview.

A similar approach has been used in studies on assessment of individual bioequiva-
lence of two drugs. Schall and Luus18 compare the difference in bioavailability YT − YR
between a test drug and a reference drug with the difference YR − YR′ between two read-
ings on the reference drug. These differences correspond to the total and intra observer
variabilities, respectively, in the context of the present article.

The coefficient ψ compares the observed value of W2 to its expected values under the
hypothesis µi1 = µi2 = · · · = µiJ for all i. In other words, denoting by µ̃j the random
variable whose value on subject i is µij, this hypothesis states that P(µ̃j = µ̃j′) = 1
for all j < j′. This hypothesis is stronger than the hypothesis of exchangeability, which
states that the joint distribution of these J variables should be invariant under all the
permutations of the indices {1, . . . , J}.19

6.1 Examples
The carotid stenosis data, presented in Section 4 and in the appendix, consist of the

readings of three raters with each of the three measurement methods. As we mentioned
earlier, the three measurement methods are considered here as ‘observers’. In addition,
we now consider the readings by the three raters as replications. We calculated the ψ
coefficients to assess the agreement among the three methods. The values of these coeffi-
cients for the left and right arteries are 0.632 and 0.738, respectively, not too far from the
corresponding coefficients of absolute agreement (CCCs) of 0.668 and 0.743, respectively.
In fact, one would expect the coefficient of interobserver agreement (ψ) to exceed the
CCC, as the latter is a measure of the total observer agreement, which is based on both
the inter- and intraobserver agreements. It is impossible to compare the two coefficients,
in general, because the CCC depends on the total variability (interobserver, intraobserver
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Table 3 Calcium scores on 12 patients

Patient

1 2 3 4 5 6 7 8 9 10 11 12

A1 7 29 1 5 38 40 53 23 70 16 114 43
A2 6 31 1 6 32 29 49 23 70 15 116 43
B1 6 30 0 5 40 30 50 23 70 16 120 43
B2 6 30 0 5 40 29 51 24 70 16 120 43

and intersubject), whereas ψ depends on the inter- and intraobserver variabilities but
not on the between-subject variability.

In order to better understand the effect of the between-subject variability on these mea-
sures of observer agreement, we consider the calcium scoring data presented by Haber
et al.16 Each of two radiologists, labeled A and B, made two replicated observations
(labeled 1 and 2) on each of 12 patients. For this data, which is presented in Table 3, we
obtained CCC = 0.997 (based on the mean of the two readings of each radiologist) and
ψ = 0.754. In other words, the value of CCC indicates that there is perfect agreement
between the two radiologists, whereas ψ indicates that there is notable disagreement.
Examination of the data suggests that indeed there is some disagreement between the
two radiologists (especially for patients 5, 6 and 11). The discrepancy between the
two coefficients is mainly a result of the considerable between-subjects variability. This
example demonstrates that the CCC may be unable to reflect observer disagreement
when the between-subjects variability is substantially larger than the between-observer
variability.16

The issue of the dependence of observer agreement coefficients on the between-
subjects heterogeneity has been debated in the past. The CCC increases as the subjects
are more heterogeneous, whereas ψ does not depend on this heterogeneity. For example,
systolic blood pressure (SBP) has a larger variance than diastolic blood pressure (DBP);
hence, the CCC for the former is usually higher than that for the latter. This would
imply that it is more difficult to measure DBP than SBP, which is not supported by any
real evidence.3 For further discussions, see Atkinson and Nevill.20

7 Conclusions

The main conclusions from the above discussion are as follows:

• The concept of relational agreement provides a more appropriate framework for the
derivation of coefficients of agreement between fixed observers when compared with
the ANOVA approach, which imposes unrealistic and unnecessary restrictions.

• The correction for chance agreement used in the definition of the coefficient of
absolute observer agreement (the CCC) is questionable, as chance agreement is not
equivalent to independence between observers.

• The simple (and general) model (13) provides an alternative framework for derivation
of coefficients of agreement. This model can be used when each observer makes
two or more replicated readings on each subject.16,17 Although the coefficient ψ
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Table 4 Comparison of approaches used to define coefficients of agreement between fixed observers

Coefficients Definition Uses ‘chance Depends on Requires
based on ANOVA agreement’ to subjects’ replications?
assumptions? scale the heterogeneity?

coefficient?

ICCs Yesa No Yes No
Relational agreement including CCC No Yes Yes No
ψ No No No Yes

aThe classical definition of the ICC is based on the variance components in the traditional ANOVA model. More
recent multilevel linear models allow estimation of variance components when the ANOVA assumptions are
relaxed.

is presented as a coefficient of absolute interobserver agreement, it can be used to
measure other types of relational agreement by replacing the actual observations Yij
by their transformed values Tij.

Table 4 compares the three approaches that have been used to define the agreement
coefficients discussed in this article.

The topic of assessing observer agreement is closely related to evaluation of measure-
ment errors. A recent book by Dunn21 summarizes various methods and approaches
used in the analysis of data with measurement errors. Another recent book by Shoukri22

reviews measures of observer agreement, though most of the book is devoted to
categorical data.
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Appendix

Appendix: Carotid artery stenosis data

Tables A1 and A2 present the carotid stenosis data for the left and right arteries
of 55 patients. The data can be downloaded from our website: www.sph.emory.edu/
observeragreement/data.htm.

Table A1 Carotid artery stenosis data–left artery

ID IA MRA-2D MRA-3D

Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3

1 100 100 100 100 100 100 100 100 100
2 73 67 77 69 60 72 59 62 62
3 0 0 3 49 0 0 0 12 0
4 17 0 0 0 0 0 0 0 0
5 27 40 0 15 31 2 38 29 19
6 31 29 34 45 51 3 38 42 41
7 18 15 17 21 23 99 57 44 0
8 68 59 100 39 56 33 61 67 77
9 0 0 0 0 0 0 47 42 99

10 18 0 0 37 0 12 25 0 13

(continued )



270 M Haber and HX Barnhart

Table A1 Continued

ID IA MRA-2D MRA-3D

Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3

11 0 0 0 0 0 0 0 0 0
12 72 65 69 100 99 100 61 60 58
13 27 27 28 42 18 99 0 0 99
14 61 53 51 100 100 71 45 44 53
15 100 100 100 100 100 100 100 100 100
16 0 0 0 0 0 0 16 99 15
17 30 31 22 25 49 9 51 40 44
18 10 27 37 21 38 12 40 28 26
19 29 33 37 50 30 25 37 45 44
20 57 60 67 100 100 100 65 63 65
21 100 100 100 0 100 0 13 17 100
22 28 17 0 22 15 0 49 0 0
23 0 34 0 21 32 0 0 18 0
24 30 34 41 55 53 99 60 46 49
25 46 40 62 56 36 0 63 70 64
26 66 61 71 78 76 55 82 83 100
27 51 43 68 100 28 0 70 0 0
28 23 27 39 45 60 26 24 44 0
29 0 0 0 74 100 100 100 100 100
30 83 100 100 70 99 100 53 100 100
31 0 0 0 26 0 0 12 0 0
32 4 0 0 25 0 0 24 34 23
33 100 100 100 100 100 100 100 100 100
34 60 60 75 45 47 15 62 99 67
35 21 19 0 0 0 0 4 0 0
36 70 79 100 23 36 0 51 42 0
37 6 18 0 7 4 99 99 99 99
38 41 52 49 44 63 0 80 73 0
39 56 45 66 100 53 0 13 23 0
40 5 0 0 30 45 31 70 34 55
41 53 39 54 63 50 31 75 72 55
42 47 56 51 7 99 0 56 58 0
43 75 84 85 100 100 100 100 100 100
44 100 100 100 100 100 100 100 100 100
45 0 100 100 44 0 99 17 100 0
46 58 61 55 46 58 49 71 99 99
47 0 0 0 30 22 0 1 24 99
48 0 0 0 0 0 0 0 0 0
49 5 0 0 0 39 0 0 0 0
50 12 25 9 26 54 0 100 0 100
51 0 0 8 0 0 0 0 0 0
52 28 29 0 100 100 99 100 84 100
53 0 0 0 0 0 0 0 0 0
54 19 31 51 53 100 100 77 83 100
55 33 74 50 69 72 100 79 100 100
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Table A2 Carotid artery stenosis data–right artery

ID IA MRA-2D MRA-3D

Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3 Rater 1 Rater 2 Rater 3

1 32 26 23 36 49 32 36 26 17
2 28 30 23 43 0 2 36 18 41
3 7 17 8 34 0 99 14 22 44
4 0 0 0 24 0 0 0 28 0
5 22 23 0 27 99 0 11 17 99
6 78 100 100 100 100 100 33 100 100
7 67 63 78 100 100 38 56 20 0
8 64 74 76 100 100 100 61 41 40
9 12 0 0 39 62 33 100 100 100

10 100 100 100 100 100 100 100 100 100
11 59 53 31 14 26 12 29 30 26
12 11 3 13 0 99 0 0 0 0
13 100 100 100 100 100 100 100 100 100
14 76 69 70 100 100 100 77 81 75
15 40 61 100 70 100 100 100 100 100
16 4 0 0 9 0 0 18 0 0
17 39 53 52 57 51 52 74 64 75
18 6 32 0 0 36 1 0 13 7
19 0 0 0 31 22 2 49 55 54
20 5 11 9 7 22 0 0 7 0
21 4 11 0 18 16 0 99 11 99
22 17 35 33 15 44 0 28 0 0
23 0 0 0 0 0 0 0 0 0
24 25 51 28 37 63 34 100 41 25
25 55 60 65 65 41 7 68 100 6
26 13 20 0 26 0 0 11 21 0
27 44 36 58 44 35 14 68 28 33
28 50 62 53 52 62 67 57 51 51
29 44 24 42 56 45 45 52 58 58
30 51 45 47 49 50 47 36 100 56
31 4 28 0 14 0 49 0 0 0
32 0 22 7 2 31 0 41 40 0
33 15 0 0 17 99 99 24 40 0
34 0 49 0 42 47 100 15 38 99
35 80 84 83 100 100 100 100 100 100
36 40 22 41 51 33 17 11 0 0
37 43 45 44 41 99 99 41 99 99
38 23 0 20 1 23 0 9 20 0
39 1 0 0 40 99 0 0 99 99
40 14 17 20 36 27 0 0 50 14
41 26 31 34 46 51 99 23 100 21
42 0 0 0 0 0 0 13 0 0
43 100 100 100 100 100 100 100 100 100
44 0 0 0 26 0 0 0 0 0
45 0 0 0 45 0 99 27 99 0
46 57 52 65 39 62 0 62 62 28
47 0 20 0 40 99 5 20 21 7
48 0 0 0 6 40 0 0 0 0
49 11 0 0 23 55 0 3 36 0
50 32 27 30 10 34 20 8 49 99
51 100 100 100 100 100 100 100 100 100
52 62 63 71 80 81 100 64 77 68
53 12 19 13 43 16 31 21 39 27
54 63 67 84 100 100 100 72 99 99
55 27 39 46 63 63 67 65 65 73




