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Abstract 

The coefficients of individual agreement (CIA’s), which are based on the ratio of the intra- 

and inter-observer disagreement, provide a general approach for evaluating agreement 

between two fixed methods of measurements or human observers. In this paper, programs in 

both SAS and R are presented for estimation of the CIA’s between two observers with 

quantitative or binary measurements. A detailed illustration of the computations, macro 

variable definitions, input and output for the SAS and R programs are also included in the 

text. The programs provide estimations of CIA’s, their standard errors as well as confidence 

intervals, for the cases with or without a reference method. Data from a carotid stenosis 

screening study is used as an example of quantitative measurements. Data from a study 

involving the evaluation of mammograms by ten radiologists is used to illustrate a binary data 

example. 
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1. Introduction 

In medical and other related sciences, many statistical approaches have been proposed 

for assessing agreement among observers or measurement methods. In a recent review paper, 

Barnhart et al. [1] classified the existing methods for evaluation agreement as follows: (1) 

descriptive tools, such as descriptive statistics and plots, (2) unscaled agreement indices, such 

as mean squared deviation (MSD), coverage probability (CP) and total deviation index (TDI) 

[2, 3, 4], and (3) scaled agreement indices. 

Among the scaled agreement indices, the intraclass correlation coefficient (ICC) [5, 6] 

and the concordance correlation coefficient (CCC) [7, 8, 9, 10] are the most popular. Under 

certain conditions, the CCC is equivalent to one version of the ICC. Specifically, if the 

ANOVA model assumptions are satisfied, the CCC reduces to the agreement ICC defined by 

this ANOVA model [1, 6, 9]. 

The CCC is based on comparing the mean squared deviation (MSD) [4] to its value 

under independence. However, independence and disagreement are two different concepts 

[11]. Furthermore, the CCC depends on the between-subject variability. Atkinson and Nevill 

[12] pointed out that an increase in the between-subject variability results in a larger value of 

CCC even if the individual differences between measurements by the two methods remain 

the same. Barnhart et al. [13] also showed that the CCC depends on the between-subject 

variability due to the fact that it is scaled relative to the maximum disagreement defined as 

the expected MSD under independence. The ICC and the CCC are originally defined for 

quantitative data. However, these coefficients have been shown to be equivalent to the 

weighted Kappa for categorical data [14, 4]. In addition, Shoukri [15] and King and 
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Chinchilli [8] also defined ICC and CCC for qualitative data. 

Haber, Barnhart and colleagues [16, 17, 18] introduced the coefficients of individual 

agreement (CIA’s), which are scaled relative to an acceptable disagreement, with the goal of 

establishing interchangeability of observers. An ‘acceptable disagreement’ requires that the 

differences between measurements of different observers are similar to the differences 

between replicated measurements of the same observer. The concept of individual agreement 

is derived from the idea of individual bioequivalence in bioequivalence studies [17, 19, 20, 

21]. Similar agreement indices have been proposed by Haber et al. [22] and Shao and Zhong 

[23]. The CIA’s compare differences between measurements from different observers to the 

differences of replicated measurements of the same observer. Therefore, they require 

replications which allow us to estimate the within-observer variability. The numbers of 

replications can be different across subjects and observers.  

It is recommended to assess the intra-observer agreement before using CIA’s because if 

the intra-observer agreement is not as good as expected, then any conclusion of inter-observer 

agreement may not be reliable. To confirm the reasonable intra-observer agreement, 

repeatability coefficient, introduced by Bland and Altman [24], can be calculated for each 

observer.  Let 1X  and 2X  be two readings made by the same observer on the same 

subject. The repeatability coefficient, defined as =c
2296.1 Wσ , where 2

Wσ  is the 

within-observer variance, satisfies 95.0)|(| 21 =≤− cXXP . Estimation of 2
Wσ  can be done 

using the MSE from a one-way ANOVA where subject is the factor. 

Previous papers used different computational approaches in estimating CIA and making 

inference for continuous and categorical data. In this paper, we present a unified 



 6

non-parametric approach for estimation of CIA’s with and without a reference for both 

continuous and categorical data by using a SAS macro and an R function. The programs also 

provide estimates for the standard errors of the estimated CIA’s, as well as confidence 

intervals. Computational methods and theory, as well as the estimation of CIA’s and the 

standard errors, are introduced in the next section. The details of the SAS and R programs are 

described in section 3. Two examples are included to illustrate the estimation of CIA’s in 

section 4. A brief summary follows in section 5. 

2. Method 

2.1 General Definition 

Haber and Barnhart [16] considered the CIA’s for the case of two observers, a continuous 

measured variable and a general disagreement function. Denote the readings of the two 

observers by X  and Y . A disagreement function ),( YXG  must satisfy (a) 0),( ≥YXG , 

and (b) ),( YXG  increases as the disagreement between X  and Y  increases, according to 

a specific criterion. The agreement between X  and Y  is ‘acceptable’ if between and 

within observer disagreement function are similar, i.e., if )',(),( XXGYXG ≈  and 

)',(),( YYGYXG ≈ , where )',( XXG  is the disagreement between two replicated readings 

made by observer X  and )',( YYG  is similarly defined for observer Y . Therefore, the 

estimation of the new coefficients requires replicated observations made by the same 

observer on the same subject. It is implicitly assumed that the extent of intra-observer 

agreement is acceptable for both X  and Y . 

When neither X  or Y  is a ‘reference’ observer, the CIA with a specific disagreement 

function G is defined as: 
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YXG

YYGXXGN +
=ψ .        (1) 

When X  is a ‘reference’ (gold standard) and Y  is a ‘new’ observer, the CIA is defined 

as 

),(

)',(

YXG

XXGR =ψ .                          (2) 

When the mean squared deviation (MSD) is used as the G function, the coefficient Nψ  

varies between 0 and 1 [16], while Rψ  may exceed 1. For both coefficients, a value close to 

unity or above unity indicates an acceptable agreement. Haber and Barnhart [16] and Haber 

et al. [18] suggested that ψ  ≥ 0.8 indicates acceptable agreement. Alternatively, one can 

consider agreement as acceptable if the confidence interval for the CIA includes 1.  

 Hereafter, we will use the most common disagreement function, 

2)(),(),( YXEYXMSDYXG −== , where MSD is the mean squared deviation. CIA’s with 

continuous observations and different disagreement functions have been discussed in Haber 

and Barnhart [16]. If MSD is used as the G function and the observations are continuous, we 

note that Rψ  is related to the FDA’s individual bioequivalence criteria [21], defined as  

2 2

'

2

'

( ) ( )

( )

iT iR iR iR

iR iR

E Y Y E Y Y
IBC

E Y Y

− − −
=

−
, 

with the following relationship (Barnhart et al. [17]) 

2
,

2

R

IBC
ψ =

+
 

when we set X as RY (reference drug) and Y as TY (test drug).  

When the observations are binary, we have: 

)()0,1()1,0()(),( 2
YXPYXPYXPYXEYXG ≠===+===−= . The binary case has 

been discussed in Haber et al. [18]. 
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Suppose that both observers evaluate the same N study subjects, indexed by .,...,1 Ni =  

Let 
ikX  denote the k -th replicated observation of X  (

iKk ,...,1= ) and 
ilY  denote the 

l -th replicated observation of Y ( iLl ,...,1= ) on subject i . Note that we allow different 

numbers of replications across subjects and methods. In general, let Z=(X,Y)’  with 

, 1,..., ; , ; 1,..., (  if ,  or  if )
ijijm ij ijm ij ij i i

Z i n j X Y m M K j X L j Yµ ε= + = = = = = = , where ijµ can 

be further written as ij i j ijµ µ α β γ= + + +  and ijmε  are independent. Then we have the same 

model as the one in FDA’s guidance [21] with X as RY  (reference drug) and Y as TY  (test 

drug). In general, G(X,Y) involves the parameters from the bivariate distribution of Z. Here 

we use a non-parametric approach, which is equivalent to using the empirical distribution of 

Z for estimation of G(X,Y). Thus, this model specification is not needed for computation.  

2.2 Estimation  

In this section, the observations may be continuous or binary. We assume that the 

numbers of replications, iK  and iL  may vary across subjects. 

2.2.1 Estimated s'ψ  

We first consider the disagreements for a particular subject i . Define: 

]|)[(),( 2 iYXEYXG iliki −= , 

]|)[()',( 2
' iXXEXXG

ikiki −=  for 'kk < , 

                   ]|)[()',( 2
' iYYEYYG

ilili −=  for 'll <           (3)              

We then obtain the overall disagreement functions as 

)],,([),( YXGEYXG i=  )]',([)',( XXGEXXG i= ,  )]',([)',( YYGEYYG i=  , 

where E stands for the expectation over all study subjects. We first estimate the disagreement 

functions for each subject: 



 9

∑∑
= =

−=
i iK

k

L

l

ilik

ii

i YX
LK

YXG
1 1

2
)(

1
),(ˆ , 

∑ ∑
−

= +=

−
−

=
1

1 1'

2

' )(
)1(

2
)',(ˆ

i iK

k

K

kk

ikik

ii

i XX
KK

XXG , 

                    ∑ ∑
−

= +=

−
−

=
1

1 1'

2

' )(
)1(

2
)',(ˆ

i iL

l

L

ll

ilil

ii

i YY
LL

YYG .      (4)             

Then, the estimates of the overall disagreement functions are: 
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Finally, the estimated s'ψ  are obtained by substituting the estimated G’s into their 

definitions in Section 2.1. 

2.2.2 Standard Errors of Estimated s'ψ  

To simplify the notations, let )',()1(
XXGG = , )',()2(

YYGG =  and 

),()3(
YXGG = .Then BA

N /ˆ
1=ψ , where 2/)( )2()1(

1 GGA +=  and )3(
GB = . Similarly, 

BAR /ˆ
2=ψ , where )1(

2 GA = . Now, for 3,2,1=p , denote the sample variances 

2)(

1

)()(2 )ˆ(
1

1
)( p

N

i

p
i

p
GG

N
GS ∑ −

−
=

=
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pp /)()(ˆ )(2)( = . In addition, for 

31 ≤<≤ qp , denote the sample covariance of )( p
G  and )(q

G  by 
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=

NGGGGGGCov
qq

i
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i

N

i

qp
, so that 

./),(),(ˆ )()()()( NGGCovGGovC qpqp =  

Using the above notations, 

NGGCovGSGSAarV 4/)],(2)()([)(ˆ )2()1()2(2)1(2
1 ++= , 

NGSAarV /)()(ˆ )1(2
2 = , 
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NGSBarV /)()(ˆ )3(2= , 

NGGCovGGCovBAovC 2/)],(),([),(ˆ )3()2()3()1(
1 += , 

NGGCovBAovC /),(),(ˆ )3()1(
2 = . 

Finally, substitute these in the approximation for the variance of a ratio: 

]
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Similarly,  

              ]
),(ˆ2)(ˆ)(ˆ

[)(ˆ)ˆ(ˆ

2

2

22
2

2

2

2
22

BA

BAovC

B

BarV

A

AarV

B

A

B

A
arVarV

R −+≈=ψ .  (6) 

The standard errors of those two estimators are simply the square roots of the variance 

estimators. 

 The estimated standard errors, along with the corresponding confidence intervals, are 

computed assuming large-sample normality of the estimators. Based on our simulations for 

the continuous and binary cases under various settings, sample size of 50 subjects provided 

coverage probabilities of at least 90% and the histograms demonstrated normal curves. This 

demonstrates that with sample size of at least 50, the normality assumption regarding the 

distribution of the estimators of CIA’s is adequate and hence our estimating method for 

standard errors is applicable. Our simulations also showed that the standard errors estimated 

by this approach are close to the corresponding standard deviations of the simulated 

estimates.   

3. SAS and R Programs 

 The programs in either SAS or R estimate the CIA's and their standard errors for two 

observers, X and Y. It can be used for quantitative data with the MSD disagreement function 
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or with binary data. As demonstrated before, the estimation of CIA’s requires replicated 

observations by each observer on each subject to estimate the within-observer disagreement. 

The coefficient 
Rψ  can be estimated when observer Y does not have replications while 

observer X has replications and is considered as the reference. The coefficient Nψ can only 

be estimated when both X and Y have replications. The programs deal separately with the 

cases where there are replications on Y and when there are no replications on Y. Since each 

subject may have different numbers of observations across observers, only subjects with 

more than one observation on both X  and Y  are used to estimate
Nψ , while only subjects 

with more than one observation on X  and at least one observation on Y  are used to 

estimate Rψ . A warning message is given if less than 10 subjects are used to estimate either 

Nψ or Rψ . Furthermore, from the theoretical aspect, Nψ  cannot be greater than 1, but in 

reality, Nψ̂  can be greater than 1 due to the randomness of the data. Last but not the least, 

we assume that any missing data are missing completely at random. Therefore we do not 

distinguish between cases where observations are missing due to the study design, due to the 

inability to observe some of the data, or for any other reasons. 

3.1 Input Data 

In the SAS macro, eight parameters, namely subject identifier, data_name, measurement, 

method, observer1, observer2, alpha and title are required for input. Regardless of what the 

subject identifier is called in the original data, either labeled as id or not, the macro variable 

id specifies the subject identifier that is used by the program. Data_name specifies the name 

of the dataset which contains the original data, while measurement is the name of the variable 

containing the outcome observations and method is the name of the variable indicating 
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observers/methods. Observer1 and observer2 are the names of the first and second observers, 

respectively. The names should exactly match those shown in the dataset and they are case 

sensitive. Alpha is one minus the confidence coefficient, and by default alpha is set to be 0.05. 

Title is designed to help the user identify the current analyses and mark the name of the 

current comparison if several comparisons are involved. The R function only contains 

data_name, observer1, observer2 and alpha. Besides that, samplesize which indicates the 

total number of subjects in the dataset is also included as a parameter. In the R function, 

“method” is the required name for observer and quotes need to be used if observer1 and 

observer2 are character variables. 

For both the SAS macro and the R function, the dataset is required to be in a ‘long 

format’, with the identifying number in one column, methods (observer) in one column and 

measurement in one column. If the original data is in a ‘wide format’ then it should be 

transferred to the required ‘long format’ before adopting the macro. An example of such 

transformation is included in the SAS macro. As stated above, we allow the numbers of 

replications to be different across subjects and observers. 

3.2 Output 

The following output is provided by our programs: (1) ),( YXMSD , )',( XXMSD , 

)',( YYMSD ; (2) estimate of 
Nψ , standard error (SE) of 

Nψ  and 100(1-α )% CI for 
Nψ ; 

(3) estimate of Rψ , SE of Rψ  and 100(1-α )% CI for Rψ . There is no gold standard 

(reference) when estimating Nψ , while observer1 is treated as the reference when 

calculating
Rψ . In addition, 

Nψ is not estimated when there is only one observation on 

observer2 for each subject.  
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4.  Examples 

Examples of the SAS and R programs input and output are presented in Tables 1 and 2. 

4.1 A Quantitative Example – Carotid Stenosis Data 

The carotid stenosis screening study was designed to determine the suitability of 

magnetic resonance angiography (MRA) for noninvasive screening of carotid artery stenosis, 

compared to invasive intra-arterial angiogram (IA). The main interest was in comparing two 

MRA techniques, two-dimensional (MRA-2D) and three-dimensional (MRA-3D) MRA time 

of flight, to the IA, which was considered as the “gold standard”. In this example, the three 

screening methods were considered as the “observers”. Readings were made by three raters 

using each of the three methods to assess carotid stenosis on each of the 55 patients. For this 

illustration, the three readings made by different raters were considered as replications. 

Separate readings were made on the left and right carotid arteries. However, in this example, 

our interest was restricted to the left side. For more details on this study, the reader is referred 

to Barnhart and Williamson [25].  

Assessing the agreement between MRA-2D and IA, Nψ̂  was 0.592 with 95% CI (0.348, 

0.835), while 
Rψ̂  was 0.231 with 95% CI (0.035, 0.427), using IA as the reference. The 

agreement between MRA-3D and IA showed similar results with 452.0ˆ =Nψ  (95% CI: 

(0.242, 0.661)) and 191.0ˆ =Rψ  (95% CI: (0.026, 0.357)) [17]. These results indicate that if 

the IA method is treated as a reference, one would conclude that MRA-2D and MRA-3D do 

not have good individual agreement with the IA method. These conclusions also hold when 

neither of the methods is considered as a gold standard. The SAS and R codes, as well as the 

output comparing MRA-2D to IA, are shown in Table 1.  
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4.2 A Binary Example – Data from a Mammography Study 

In a mammography study [26], 150 female patients underwent a mammography at the 

Yale-New Haven Hospital in 1987. Each of ten radiologists read each patient’s mammogram 

and classified it into one of four diagnosis categories: (1) normal, (2) abnormal – probably 

benign, (3) abnormal – intermediate or (4) abnormal – suggestive of cancer. Four months later, 

the same films were reviewed again, in a random order, by the same radiologists. We 

considered the two evaluations as replications. In the present analysis, we considered a 

radiologist’s rating as “positive” if the mammogram was classified into the fourth category, 

which was abnormal and suggestive of cancer. Otherwise, the rating was considered as 

“negative”. Each of the study participants was followed up for three years, and then a 

definitive diagnosis was made. The definitive diagnosis was breast cancer if it was 

histopathologically confirmed within the three years of follow-up. We considered this 

diagnosis as the patient’s “true” breast cancer status. Based on this criterion, 27 of 150 

patients (18%) had breast cancer. Ten radiologists were involved. Since the total of sensitivity 

and specificity was highest for radiologist A, we illustrated the new coefficients in [18] by 

estimating the agreement between radiologist A and each of the remaining nine radiologists. 

Radiologist A was considered as the reference in estimating Rψ . 

In the current illustration we focus on the agreement between radiologists A and F.  

When neither radiologist is considered as a reference, Nψ̂  is 0.762 with 95% CI (0.476, 

1.047); while with radiologist A as the reference, Rψ̂  is 0.571 with 95% CI (0.162, 0.981).  

Thus, the CI for 
Nψ̂  includes 1 and we can claim that the agreement between radiologists A 

and F is acceptable when neither of them is considered as the reference. On the other hand, 
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the CI for Rψ  does not include 1, hence agreement is not acceptable when radiologist A is 

considered as a reference. SAS and R codes as well as outputs are shown in Table 2.  

5.  Summary 

In this paper, we provide computer programs to estimate the coefficients of individual 

agreement (CIA’s), which are based on the ratio of within-observers and between-observers 

disagreement. Both a SAS macro and an R function were introduced to estimate CIA’s along 

with their SE’s and confidence intervals, when one of the observers was considered as a 

reference and when neither of the observers was a reference. Two examples demonstrated 

that our programs worked well for both quantitative and binary measurements.  

6.  Macro Availability and Software Requirement 

The CIA programs in SAS and R are available directly from the authors. They can 

also be found at the following website: http://www.sph.emory.edu/observeragreement/ . The 

programs were written in SAS V9.1.3 and R 2.9.1. The R users need to download, install and 

load the packages “fSeries” and “reshape” from CRAN mirror. The functions “melt” and 

“cast” were involved in transferring the data format. 
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Table 1 Estimating the agreement between MRA-2D to IA using CIA’s in the stenosis 

screening study (left side). 

Description 
The three readings by different raters were treated as replications. In method 

column, “1” denotes IA while “2” denotes MRA-2D. Measurement column 

contains the corresponding readings from each method. 

Original Dataset 
id method measurement 

1 1 100.000  

1 1 100.000  

1 1 100.000  

1 2 100.000  

1 2 100.000  

1 2 100.000  

2 1 73.077  

2 1 66.575  

2 1 77.186  

2 2 69.472  

2 2 60.410  

2 2 72.214   

SAS code 
%include 'D:\CIA\program\CIA_macro.sas' ; 

%CIA (id=id, data_name=sten_left, measurement=measurement, 

method=method, observer1=1, observer2=2, alpha=0.05, title=Comparison 

between IA and MRA-2D); 

R code 
sten <- read.csv(file="C:\\ CIA\\data\\sten_left.csv", header=T) 

out <- CIA(data_name=sten_left, observer1=”1”, observer2=”2”, 

samplesize=55, alpha=0.05) 

Output 
Comparison between IA and MRA-2D 

Estimate of MSD Functions 

MSD_XX      MSD_YY      MSD_XY 

279.447         1153.48       1210.77 

 

Estimated Psi_N 

Est_     SE_Est_      95.0% CI 

Psi_N    Psi_N       for Psi_N 

0.592    0.124        (0.348,0.835) 

 

Estimated Psi_R 

Est_     SE_Est_      95.0% CI 

Psi_R    Psi_R       for Psi_R 

0.231    0.100        (0.035,0.427) 
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Table 2 Estimating the agreement between radiologist A and F using CIA’s in the 

mammography study. 

Description 
The two readings of radiologist A were called x1 and x2 since A was treated as 

the reference for Rψ . The measurements of radiologist F were y1 and y2. 

Original Dataset 
study_id rater reading 

1 A 0 

1 A 0 

1 F 0 

1 F 0 

2 A 0 

2 A 0 

2 F 0 

2 F 0  

SAS code 
%include 'D:\CIA\program\CIA_macro.sas' ; 

%CIA (id=id, data_name=mammo, measurement=reading, method=rater, 

observer1=A, observer2=F, alpha=0.05, title=Comparison between A and F); 

R code 
mammo <- read.csv(file="C:\\ CIA\\data\\mammo.csv", header=T) 

out <- CIA(data_name=mammo, observer1=”A”, observer2=”F”, 

samplesize=150, alpha=0.05) 

Output 
Comparison between A and F 

Estimate of MSD Functions 

MSD_XX      MSD_YY      MSD_XY 

0.040          0.067          0.070 

 

Estimated Psi_N 

Est_     SE_Est_      95.0% CI 

Psi_N    Psi_N       for Psi_N 

0.762    0.146       (0.476,1.047) 

 

Estimated Psi_R 

Est_     SE_Est_      95.0% CI 

Psi_R    Psi_R       for Psi_R 

0.571    0.209       (0.162,0.981) 

 


