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SUMMARY. Clinical studies are often concerned with assessing whether different raters/methods produce 
similar values for measuring a quantitative variable. Use of the concordance correlation coefficient as a mea- 
sure of reproducibility has gained popularity in practice since its introduction by Lin (1989, Biometrics 45, 
255-268). Link method is applicable for studies evaluating two raters/two methods without replications. 
Chinchilli et al. (1996, Biometrics 52, 341-353) extended Lin’s approach to repeated measures designs by 
using a weighted concordance correlation coefficient. However, the existing methods cannot easily accom- 
modate covariate adjustment, especially when one needs to model agreement. In this article, we propose a 
generalized estimating equations (GEE) approach to model the concordance correlation coefficient via three 
sets of estimating equations. The proposed approach is flexible in that (1) it can accommodate more than 
two correlated readings and test for the equality of dependent concordant correlation estimates; (2) it can 
incorporate covariates predictive of the marginal distribution; (3) it can be used to identify covariates pre- 
dictive of concordance correlation; and (4) it requires minimal distribution assumptions. A simulation study 
is conducted to evaluate the asymptotic properties of the proposed approach. The method is illustrated with 
data from two biomedical studies. 
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1. Introduction 
Accurate and precise measurement is an important compo- 
nent of any proper study design. Before a method, a rater, 
or an instrument is adopted for use in measuring a variable 
of interest, a reliability or a validity study is often conducted 
in clinical or experimental settings. These reliability studies 
are often concerned with assessing whether different meth- 
ods/raters produce similar values. The kappa statistic (Co- 
hen, 1960) and the weighted kappa statistic (Cohen, 1968) 
are the most popular indices for measuring agreement for dis- 
crete outcomes. Traditionally, intraclass correlation (Fleiss, 
1986; Quan and Shih, 1996) and within-subject coefficient 
of variation (Lee, Koh, and Ong, 1989) have been used as 
indices to evaluate reproducibility. These indices can be es- 
timated by using random-effects models. As elaborated by 
Lin (1989, 1992), the concordance correlation coefficient is 
more appropriate for measuring agreement when the variable 
of interest is continuous. The advantage of this index is that 

it includes components of both precision and accuracy. Un- 
like the concordance correlation coefficient, neither the intra- 
class correlation coefficient nor the within-subject coefficient 
of variation contain measurement of accuracy. In general, the 
correlation coefficient measures the precision component and 
the ratio of the correlation coefficient and concordance corre- 
lation coefficient measures the accuracy component. Several 
authors (Krippendorff, 1970; Fleiss and Coheri, 1973; Donner 
and Koval, 1980; Robieson, 1999) noted that the concordance 
correlation coefficient (or intraclass corrclation coefficient in 
special cases) computed from ordinal scaled data is equivalent 
to the weighted kappa when integer scores are used. 

Chinchilli et al, (1996) extended Link approach to repeated 
measures designs by using a weighted concordance correlation 
coefficient. However, these methods are difficult to use when 
one would like to model the agreement measure as a func- 
tion of covariates. Barlow (1996) showed that the estimates 
of agreement using the kappa coefficient may be inflated if 
one fails to account for confounding in the marginal distribu- 
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tion. Similar issues may arise when one uses the concordance 
correlation coefficient for measuring agreement in the case of 
a continuous variable. Several authors (Barlow, 1996; Molen- 
berghs, Fitamaurice, and Lipsitz, 1996; Shoukri and Mian, 
1996) have proposed methods to construct inference on kappa 
while adjusting for covariates through the marginal distribu- 
tion. However, as noted by Klar, Lipsitz, and Ibrahim (2000) 
and Gonin et al. (2000), the adjustment in the marginal dis- 
tribution only produces an overall/summary agreement mea- 
sure. There are practical needs to compare agreement for mul- 
tiple or stratified samples, and investigators may wish to “de- 
termine and evaluate the strength of agreement taking into 
account patient-specific (age and gender) as well as rater spe- 
cific (whether board certified in dermatology) characteristics” 
(Gonin et al., 2000, p. 1). This suggests modeling agreement 
as a function of these covariates. 

Often, reliability studies will be devised to compare agree- 
ment between various methods or instruments used to assess 
subjects. In addition, a reliability study may be used to eval- 
uate the agreement between a new method and a widely ac- 
ceptable proven method, a gold standard, which is also mea- 
sured with error. In these situations, numerous assessments 
or ratings will be made on the same subject. These measure- 
ments will tend to be positively correlated and this correlation 
must be taken into account to conduct valid inference. Here 
we focus on the analysis of reliability studies that compare 
various methods or instruments with correlated continuous 
measurements assessed on the same subject with adjustment 
for covariates. 

Several authors (Lipsitz and Fitzmaurice, 1996; Molen- 
berghs et al., 1996) have used generalized estimating equa- 
tions (GEE) to construct inference on an overall kappa statis- 
tic while adjusting for covariates in the marginal distribu- 
tion. More recently, several approaches have been proposed 
using GEE equations to model kappa or weighted kappa as a 
function of covariates (Gonin et al., 2000; Klar et al., 2000; 
Williamson et al., 2000). In this article, we propose a GEE ap- 
proach to model both the concordance correlation coefficient 
and the marginal distribution while adjusting for covariates. 
The proposed approach is flexible in the sense that (1) i t  
can accommodate more than two correlated readings; (2) it 
can easily incorporate covariates predictive of the marginal 
distribution; (3) it can be used to identify covariates predic- 
tive of concordance correlation; and (4) it requires minimal 
distributional assumptions. In Section 2, we present the pro- 
posed GEE approach for modeling the concordance correla- 
tion coefficient. A simulation study is conducted to evaluate 
the asymptotic properties of the proposed approach under 
small and moderate sample sizes in Section 3. In Section 4, 
we illustrate the proposed method using two examples. The 
first example compares three readings using a mercury sphyg- 
momanometer and one reading from an electronic digital in- 
strument in measuring blood pressure. The second example 
compares two new methods and a gold standard method in 
evaluating carotid stenosis from a carotid stenosis screening 
study. 

2. Modeling Concordance Correlation via GEE 
Suppose that J readings are taken on N subjects in a study. 
These J readings may come from a combination of several 
raters and several measuring instruments. Let Yi (i = 1,. . . , 

N) be the J x 1 vector that contains the J readings and let 
the J x p matrix Xi denote the corresponding p covariates 
for the ith subject. For simplicity, the first column of X i  is 
a vector of all ones representing an intercept term. The co- 
variates can either be subject-specific and/or reading-specific 
variables. Examples of subject-specific covariates are age, gen- 
der, and race. The indicator variables for raters or instruments 
are examples of reading-specific covariates. 

For any two readings Y ,  and qr (1 5 j ,  j‘ 5 J,  j # j ’ ) ,  Lin 
(1989) used the expected squared difference, E[(Y, - Y j r ) 2 ] ,  
scaled between -1 and 1 to define the concordance correlation 
coefficient as 

E [(Y, - Yj,)’] 
PCj j l  = 1 - 

u; + u;, + (p j  - pjt)2 

2Ujj’ - - 
uj” + u;, + (pLj - p j y  

2 where pj  = E(Y,), pjt = E ( Y , , ) ,  ui = var(Y,), uj l  = 
var(Yji), ujj, = cov(yj,Yjt) = u j u j t p j j / ,  and pj j ’  is the 
usual correlation between Yj and Yji. Note that p j j i  = pcj j l  
if and only if pj = pjr and uj = uj,. In general, we have 
-1 5 -1pjjtI 5 pCjj i  5 IpjjrI 5 1 (Lin, 1989). 

In order to model concordance correlation, one needs to 
estimate the means and the variances of Yj and Yjt. Three 
sets of estimating equations are proposed. Let p be a p x 1 
marginal parameter vector. In the first set of equations, we 
model the marginal mean of Y by E ( Y i )  = pi = X i p ,  and 
the parameter estimates of ,B are obtained by GEE as 

2 2  

N 

i=l 

where D i  = api/dp and Vi is the working covariance matrix 
for Yi (Zeger and Liang, 1986). In the second set of equa- 
tions, we estimate the variance of Y .  Note that the variances 
are smaller when one accounts for covariates in the above 
marginal model. For simplicity, we assume that the variance 

and 6$ = E Yi . Then 6? = c2 + p i ,  where u2 = (u:, . . . , 
u:)’ with 4 l)var(Yij) and p? = ( P : ~ ,  . . . , & ) I .  We solve 
the following second set of estimating equations to obtain es- 
timates for c2: 

does not depend on covariates. Let Y2 = (y,”,, xi,. . . , y Z J )  2 ’  
2” 

N 

i=l 

where Fi = a6$/ac2 and Hi is the working covariance matrix 
for Yi2. In practice, we can use a diagonal matrix for Hi with 
the j t h  component as var(Y,:). If Yi is normally distributed, 
then we have var(Y;) = 2uj” +4p:jo;. We use this expression 
as the diagonal component of Hi even if Yi is not normally 
distributed. 

Note that E(Y,Yji) = cov(Yj, qr)+pjp j t  = pcj j ’  (s;+u;,+ 

(pj -p j , )2 ) /2+p jp3 , .  This implies that tEe concordance cor- 
relation can be obtained once the means and the variances are 
estimated. Therefore, we use the J ( J  - 1)/2 pairwise prod- 
ucts YjYj, to model the concordance correlation in a third 
set of estimating equations. Let Ui = ( y Z l y 2 2 ,  . . . , 
y i ( J - l l yZ~) ’  be the J ( J  - 1)/2 x 1 vector of the pairwise 
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products of readings for subject i and denote 8i = E(Ui). 
Then 8i is a function of u2, pi, and the concordance corre- 
lation coefficients (see the expression for E(%%t)). We use 
Fisher’s 2-transformation to  model the concordance correla- 
tion coefficient because it ranges between -1 and 1 as 

where pcijj’ is the concordance correlation between the j t h  
and the j’th readings for subject i and Qijji includes a sub- 
set of covariates in Xi  as well as indicator variables for pairs 
( j , j ’ ) .  For example, if we believe that the concordance cor- 
relations among the first three readings are similar, we may 
pool the information together by using an indicator variable 
taking value one if the (j l j’) th pair is equal to (1,2), (1,3), 
or (2,3) and taking the value zero otherwise. We solve for a 
using the following third set of estimating equations: 

N 

C c;w;l (ui - ei (alp,  g2)) = 0, (3) 
i=l 

where Ci = % i / d a  and Wi is the working covariance matrix 
for Ui.  In practice, we use the diagonal matrix for Wi with 
the (j,j’)th component as var(Y,jqj,). If Yi is distributed as 
a multivariate normal random variable, then var(xjYijt) = 
~ 2 ~ 2 ,  + p2.~2,  + p:j,u; + u;jt + 2pijpijlujj1, where ujjl = 

(pcijjt (u;+u;~ +( ,~ i j -p i j i )~ ) ) /2 .  We use this expression for a 
diagonal element in Wi even if Yi is not normally distributed. 

Our main interest here is to obtain the parameter estimates 
of (IY and then the estimates for the concordance correlation 
coefficients. When there are no covariates, the above esti- 
mation process requires no iterations and the resulting con- 
cordance correlation estimate is exactly equivalent to Link 
coefficient. We obtain & by solving three sets of estimating 
equations. Specifically, we obtain parameter estimates for /3 
(p) by using a modified Fisher-scoring iterative procedure, 

for the first set of equations. Thus, we have estimates for pi, 
pi. Replacing pi with pi in the second set of equations, we 
obtain parameter estimates for u2 (a^2). Finally, we replace 
pi and u2 with f i i  and u2 in the third set of equations and 
obtain the parameter estimates for a, &. We again used the 
modified Fisher-scoring iterative procedure for solving the sec- 
ond and third equations. Following similar arguments used 
for the usual generalized estimating equations (Liang, Zeger, 
and Qaqish, 1992), we can easily show that the parameter 
estimates are consistent provided that the three models are 
correctly specified. This is true whether or not the working 
correlation matrices in the three sets of equations are correctly 
specified. 

In order to perform inference on the concordance correla- 
tions, one needs to obtain estimates for the standard error of 
6. Note that 6 is obtained in the third set of equations with 
estimated p and g2. Therefore, we will need to incorporate 
the uncertainty in estimating p and u2 in order to obtain 
the estimates for the standard error of 6. Following Prentice 
(1988), we can show that the joint asymptotic distribution of 
N 1 I 2 [ ( j  - ,f3)’, (u2 - u2)’, (& - a)’]’ is Gaussian with mean 

3 3  2 3 3  

p1+1 = pl-{c,N_l Dp2:1Di}-1{Ezl D;v;1(YZ-fii(pl)}, 

zero and variance matrix as N times 

Al l  A12 A13 
B = *-lA*’-l = 9-1 (A21 A22 A23) 

A31 A32 A33 

where 

*= 

N C D!,v;~D~ 0 0 
i= l  . -  

N N 

i=l i=l 
N N N 

i=l i=l i = l  

with L~ = @/ap, E~ = aei/ap, G~ = aoi/aa2, and 

N 

Al l  = D ’ , V ~ ~ l v a r ( Y i ) V ~ l D i ,  
i=l 
N 

A12 = C D ~ V ; ~ C O V ( Y ~ , Y : ) H Y ’ F ~ ,  
i=l 
N 

A13 = CDIV;’COV(Y~,  Ui)W2’1Ci, 
i=l 
N 

A22 = CFEH,lvar(YS)H;lF,, 
i= 1 
N 

A23 = C F : H I ~ C ~ ~ ( Y , ~ , U ~ ) W ; ~ C ~ ,  
i=l 
N 

A33 = CC:W;’var(Ui)WTIC,, 
i=l 

A21 = 4 2 ,  

A31 = Ai3i 
A32 = AL3. 

We obtain an estimate for B by replacing the parameters by 
their corresponding estimates that are the solutions to the 
estimating equations and estimate the covariances in A by 
the consistent moment estimates, 

var(Yi) = ( ~ i  - f i i ) ( ~ i  - pi)‘, 
2 

C O V ( Y i ,  Yi ) = (Yi - fii)(Y? - &)‘, 
cov(Y2, UZ) = (Yi - bi)(Ui  - &)Il 

var(Y:) = (Y: - 6:))~: - J:)’, 
COV(Yi, Ui) = (Yi - B?)(Ui - &)’, 2 2 

var(Ui) = ( ~ i  - B,)(u~ - & ) I .  

We refer to B as the empirically corrected variance estimate of 
6, h2, and 8. The estimate for the variance of $ is obtained by 
taking the appropriate rows and columns in B. Finally, once 
we have 6 and the corresponding 95% confidence intervals, 
the inverse of Fisher’s 2-transformation is used to obtained 
the estimates for the concordance correlation coefficients and 
their corresponding confidence intervals. We note that one 
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Table 1 
Results of first set of simulations based o n  500 data setsa 

b 
Pc12 

b 
Pc2 

b 
Pc 1 

Mean of Mean of Mean of Type 1 
True value est. SE est. SE est. SE error 
p pc12 Mean (SD) (95% cover.) Mean (SD) (95% cover.) Mean (SD) (95% cover.) rate (%) 

0.5 
0.7 
0.sc 

0.5 
0.7 
O.gd 

0.5 
0.7 
0.9 

0.471 
0.660 
0.848 

0.471 
0.660 
0.848 

0.471 
0.660 
0.848 

0.434 (0.182) 
0.644 (0.145) 
0.872 (0.099) 

0.461 (0.109) 
0.675 (0.082) 
0.895 (0.049) 

0.481 (0.078) 
0.690 (0.056) 
0.897 (0.029) 

0.157 (90%) 
0.124 (93%) 
0.081 (90%) 

0.105 (93%) 
0.078 (94%) 
0.044 (95%) 

0.073 (92%) 
0.053 (93%) 
0.028 (96%) 

N = 26 
0.460 (0.153) 0.138 (92%) 
0.669 (0.119) 0.105 (92%) 
0.882 (0.057) 0.048 (93%) 

0.476 (0.106) 0.102 (94%) 
0.682 (0.080) 0.073 (92%) 
0.893 (0.033) 0.030 (95%) 

0.486 (0.074) 0.072 (94%) 
0.696 (0.053) 0.051 (94%) 
0.897 (0.021) 0.021 (97%) 

N = 50 

N = 100 

0.428 (0.134) 
0.618 (0.112) 
0.824 (0.072) 

0.441 (0.092) 
0.640 (0.070) 
0.840 (0.039) 

0.455 (0.062) 
0.654 (0.047) 
0.845 (0.024) 

0.117 (92%) 

0.059 (91%) 
0.099 (91%) 

0.084 (91%) 
0.066 (92%) 
0.035 (94%) 

0.058 (92%) 
0.045 (94%) 
0.023 (95%) 

9.2 
9.6 
7.6 

5.2 
6.8 
4.0 

7.0 
5.6 
4.0 

aData are generated from a six-dimensional multivariate normal distribution with equal means, equal correlations ( p  = p C l  = p c 2 ) ,  

b p c l ,  pc2, and pc12 are concordance correlation coefficients within methods 1 and 2 and between methods 1 and 2, respectively. 
and unequal variances (1.0 and 2.0) within methods 1 and 2, respectively. 

Convergence occurs in 486 data sets. 
Convergence occurs in 499 data sets. 

may obtain the same estimates of concordance correlation 
coefficients as Lin’s method when there are no covariates. 
However, our empirically corrected standard errors may be 
larger than Link because we don’t make normality assump- 
tions concerning var(Y$) and var(xjY&,) when computing 
the proposed standard errors. 

Noting that E(Y,Y,,) = p j j / u j u j /  + p j p j f ,  it requires min- 
imal effort to model the correlation coefficient as a function 
of covariates by the same three sets of estimating equations. 
The estimates of the correlation coefficient can provide insight 
on whether the poor agreement is due to precision or due to 
accuracy because the correlation coefficient ( p )  measures the 
precision and xa = p c / p  measures the accuracy. 

3. Simulations 
We conducted analyses using simulated data to assess the 
performance of our method. We examined the bias of the 
concordance correlation estimates and determined how well 
the empirically corrected standard error estimate performs 
with small to moderate sample sizes with two sets of simula- 
tions. We assumed that each subject was assessed by three 
raters with two methods for both sets of simulations. Let 
Yi (i = 1,. . . , N )  be the 6 x 1 vector denoting the six read- 
ings on subject i from the three raters using methods 1 and 2 
(where the first three readings are from method 1). We gen- 
erated continuous responses, Yi, from a multivariate normal 
distribution. 

For the first set of simulations, we assumed a common 
mean for the normal random variables, generating each read- 
ing with differing variances for each of the two assessment 
methods, i.e., Yi N N(pi, E) with pij = PO + p lz l i  + p 2 z 2 i  

for j = 1,. . . , 6  and i = 1,. . . , N .  The first covariate, z l i ,  
is a binary subject-specific variable taking a value of zero 

for i = 1 , .  . . , N/2 and one otherwise. The second covariate, 
x 2 i ,  is a continuous subject-specific variable generated as a 
U(-1, 1) random variable. The values of the parameters gen- 
erating the data are PO = 0.0 and = pz = 1.0. We assume 
that the variances of the readings are 1.0 and 2.0 for methods 
1 and 2, respectively. The correlation coefficients in the co- 
variance matrix 27 are assumed to be the same and equal to 
p. Thus, the concordance correlation coefficients within each 
method are the same and equal to the correlation coefficient p. 
Let pCl and pc2 be the concordance correlation coefficients for 
methods 1 and 2, respectively. Then we have pCl = pc2 = p. 
However, the concordance correlation coefficient (pc.2) mea- 
suring the agreement between the two methods is smaller than 
the correlation coefficient because we assumed differing vari- 
ances for the two methods. We analyzed 500 data sets of size 
26, 50, and 100 ( N )  for the following values of the common 
correlation coefficient: 0.5,0.7, and 0.9. A test of Ho: pCl = pc2 
is performed to check the Type I error rate. 

Table 1 summarizes the first set of simulations. The esti- 
mate of the concordance correlation coefficient is biased down- 
ward with the bias decreasing as sample size increases. The 
average of the 500 empirically corrected standard error es- 
timates of Pc (computed as ((6’pc/aCi)2viir(&))1/2 using the 
delta method) tends to be smaller than the empirical stan- 
dard deviation of ,ijc (calculated from the 500 PC values) for 
small sample sizes (N = 26,50). This results in smaller 95% 
coverage for pc.  The estimated Type I error rate for comparing 
the equality of the concordance correlation coefficients for the 
two methods is near 5%, although the test may be somewhat 
liberal for the smallest sample size ( N  = 26). 

In a second set of simulations, we examine estimation of 
the concordance correlation coefficient for the situation when 
the marginal distribution differs for the two methods but the 
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Table 2 
Results from the second set of simulations based on 500 data sets" 

True value 

b b b 
Pcl Pc2 pc12 

Mean of Type 1 Mean of 
est. SE 

Mean of 
est. SE 

p pc12 Mean (SD) (95% cover.) Mean (SD) (95% cover.) Mean (SD) 

0.5 0.485 0.429(0.185) 
0.7 0.679 0.651 (0.150) 
0.9' 0.873 0.874 (0.102) 

0.5 0.444 0.428 (0.192) 
0.7' 0.622 0.639 (0.144) 
0.9' 0.800 0.876 (0.078) 

0.5 0.485 0.468 (0.117) 
0.7 0.679 0.683 (0.078) 
0.9' 0.873 0.895 (0.040) 

0.5 0.444 0.468 (0.114) 
0.7 0.622 0.680 (0.086) 
0.9' 0.800 0.893 (0.041) 

0.5 0.485 0.489 (0.077) 
0.7 0.679 0.685 (0.058) 
0.9 0.873 0.896 (0.024) 

0.5 0.444 0.487 (0.072) 
0.7 0.622 0.691 (0.055) 
0.9 0.800 0.896 (0.025) 

0.156 (90%) 

0.069 (89%) 
0.119 (91%) 

0.159 (90%) 
0.123 (91%) 
0.071 (90%) 

0.107 (93%) 
0.075 (93%) 
0.037 (92%) 

0.105 (92%) 
0.077 (94%) 
0.037 (93%) 

0.073 (92%) 
0.053 (92%) 
0.024 (94%) 

0.073 (95%) 
0.052 (94%) 
0.024 (93%) 

N = 26, 03 = 0.25 
0.434 (0.168) 0.158 (93%) 
0.642 (0.162) 0.130 (91%) 
0.877 (0.096) 0.070 (91%) 

N = 26, p3 = 0.5 
0.433 (0.197) 0.169 (89%) 
0.628 (0.170) 0.142 (91%) 
0.872 (0.099) 0.077 (88%) 

N = 50, p3 = 0.25 
0.475 (0.119) 0.109 (92%) 
0.681 (0.086) 0.077 (93%) 
0.895 (0.043) 0.039 (94%) 

N = 50, p3 = 0.5 
0.471 (0.133) 0.112 (91%) 
0.674 (0.092) 0.084 (94%) 
0.891 (0.046) 0.041 (90%) 

0.486 (0.077) 0.075 (94%) 
0.687 (0.058) 0.054 (93%) 
0.897 (0.027) 0.025 (93%) 

N = 100, p3 = 0.25 

N = 100, 03 = 0.5 
0.484 (0.082) 0.079 (93%) 
0.693 (0.058) 0.055 (96%) 
0.898 (0.028) 0.026 (95%) 

0.428 (0.141) 
0.630 (0.131) 
0.842 (0.102) 

0.388 (0.153) 
0.562 (0.139) 
0.754 (0.123) 

0.460 (0.094) 
0.661 (0.073) 
0.862 (0.058) 

0.419 (0.097) 
0.598 (0.084) 
0.782 (0.059) 

0.473 (0.063) 
0.666 (0.051) 
0.867 (0.027) 

0.433 (0.063) 
0.614 (0.057) 
0.790 (0.039) 

est. SE error 
(95% cover.) rate (%) 

0.126 (91%) 

0.069 (89%) 
0.109 (90%) 

0.125 (87%) 
0.116 (90%) 
0.086 (89%) 

0.088 (93%) 
0.068 (93%) 
0.039 (93%) 

0.087 (92%) 
0.078 (92%) 
0.054 (93%) 

0.061 (94%) 
0.048 (94%) 
0.026 (94%) 

0.063 (94%) 
0.054 (94%) 
0.036 (93%) 

8.4 
9.6 
5.7 

7.8 
6.0 
5.5 

10.0 
6.4 
2.6 

8.8 
8.0 
4.1 

4.4 
5.6 
5.6 

8.4 
6.4 
5.0 

" Data are generated from a six-dimensional multivariate normal distribution with unequal means for methods 1 and 2, equal corre- 
lations ( p  = pCl = pc2), and equal variances (= 1.0). 

pel, pc2, and pc12 are concordance correlation coefficients within methods 1 and 2 and between methods 1 and 2, respectively. 
' Convergence occurs in 475, 498, 496, or 493 data sets. 

variance of the ratings is constant. We generated multivari- 
ate normally distributed ratings as follows: Yi N N(pi, E) 
with pij = Po + p l q i  + &22i + p323ij for j = 1,. . . , 6 and 
i = 1,. . . , N .  The covariates q i  and x2i and the parame- 
ters PO, 01, and ,& are the same as in the first set of sim- 
ulations. The third covariate, 23ij, denotes the assessment 
method and takes a value of zero for j = 1,2,3 (first method) 
and a value of two for j = 4,5,6 (second method). We gener- 
ated data with p3 = 0.25 and 0.5, thereby assuming that the 
raters tend to assess subjects higher with the second method 
than with the first method. We assume that var(Y&) = 1.0 
and corr(Y.. xj,) = p for i = 1,. . . , N and j ,  j '  = 1,. . . , 6  
with j # j . Again, the concordance correlation coefficients 
(pel , pc2) for each method are the same and are equal to p. 
However, the concordance correlation coefficient between the 
two methods (pc12) is smaller than p because the marginal 
means are different for the two methods. We analyzed 500 
data sets for each value of p = 0.5,0.7,0.9; p3 = 0.25,0.5; and 
sample size N = 26,50, and 100. We also test Ho: pCl = pcz 
to assess the Type I error rate. 

Y ' 

Table 2 summarizes the second set of simulations. Differ- 
ing marginal distributions for the readings on an individual 
(different p3 values) do not appreciably affect the bias of the 
concordance correlation coefficients (pel, pc2, pc12). The mean 
of the 500 empirically corrected standard error estimates per- 
forms fairly well in comparison with the empirical standard 
deviation of bC (calculated from the 500 pc values) for moder- 
ate sample size but tends to be smaller for small sample sizes. 
This results in smaller 95% coverage for pc. The Type I error 
rate tends to be somewhat liberal for p = 0.5 and somewhat 
conservative for larger values (e.g., p = 0.9). 

In summary, the proposed GEE method for estimating con- 
cordance correlation coefficient tends to underestimate the 
true concordance correlation coefficient in small samples, aI- 
though this bias is appreciably smaller in larger samples. The 
coverage is good for the largest sample size ( N  = 100) but 
is smaller than 95% for smaller sample sizes. This may be 
due to the fact that the empirically corrected standard er- 
ror is smaller than the standard deviation from the empirical 
distribution. One may consider multiplying the variance esti- 
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Figure 1. Systolic blood pressure data (mm Hg). 

mate errors by a factor of N / ( N  - 1) or even N / ( N  - 2) with 
a small sample size. 

4. Examples 
We illustrate the proposed method by analyzing data from 
two biomedical studies. The first example is from a study 
evaluating inexpensive electronic digital instruments (DI) for 
measuring blood pressure in field study settings. It is eas- 
ier for field personnel to use an electronic digital instrument 
than a mercury sphygmomanometer (MS) in measuring adult 
blood pressure. The original analysis for this study has been 
reported elsewhere using Lin’s method (Torun et al., 1998). 
We use this data set for illustrative purpose only. In this study, 
systolic and diastolic blood pressures were measured by three 
observers using the MS method as well as by the DI method 
for each subject. No covariates are available in this data set. A 
total of 228 adult subjects had eight readings, four for systolic 
blood pressure (SBP) and four for diastolic blood pressure 
(DBP). The ranges of SBP and DBP among the 228 subjects 
are 82-236 and 50-148 mm Hg, respectively. 

We plotted the SBP readings from MS observer i against 
the SBP readings from MS observer j to examine agreement 
within MS observers (Figure 1). We also plotted the SBP 
readings from MS observer 1 against the SBP readings us- 
ing the DI method to  explore the agreement between the MS 
method and the DI method (Figure 1). These plots show that 
the points are clustered around the 45’ line with small varia- 
tion. Thus, we expect to see high precision and accuracy from 
these data. Plots of the DBP readings show similar findings 
(figure not shown). We computed all possible pairwise con- 
cordance correlation coefficients and their corresponding 95% 
confidence intervals (CI) using both Link method and the 
proposed method (Table 3). 

We used indicator variables for the three observers as co- 
variates in the marginal model for the proposed method (the 
DI method is treated as the reference group here). Using 
j = 1,2,3,4 to index the three MS readings from the three 
observers and one reading from the DI method, we model the 
concordance correlation coefficients as follows: 

- 
- a l Z l 2  + a 2 2 1 3  + a 3 z 2 3  + a 4 z 1 4  + a 5 2 2 4  + 016234, 

where Zkl(l 5 k ,  1 5 4, k # 1 )  are the indicator variables for 
pair ( j , j ’ ) ,  i.e., Z k l  = 1 if (Ic, l)  = ( j , j ’ )  and Z k l  = 0 other- 
wise. The above models are used to analyze the SBP and the 
DBP data separately. Once 15 is obtained from the third set 
of estimating equations, the estimated pairwise concordance 
correlation coefficients as well as their 95% CIS are computed 
using the inverse of Fisher’s 2-transformation. Note that the 
parameter estimates from the proposed method are identical 
to the ones obtained using Link method. The 95% confidence 
intervals using the proposed method are slightly wider than 
the corresponding ones using Lin’s method. This is because we 
use the empirically corrected standard error estimates, which 
do not require the normality assumption. 

The estimates for the three concordance correlation coef- 
ficients within observers are similar (ranging from 0.987 to 
0.989 for the SBP readings and from 0.961 to 0.971 for the 
DBP readings) and the estimates for the three concordance 
correlation coefficients between the MS and DI methods are 
also similar (ranging from 0.969 to 0.977 for the SBP readings 
and from 0.954 to  0.957 for the DBP readings). Therefore, it 
is useful to summarize the reproducibility by two numbers, 
one of which is the within-observer reproducibility and the 
other is the between-method reproducibility. We simplify the 
above model for the concordance correlation coefficients by 
using two parameters, 

1 1 + PCZjj‘ 
s l o g  . . .  = CVlZl + a 2 z 2 ,  

cv3’  

where Z1 = 1 if (j,j’) equals (1,2),(1,3), or (2,3) and zero 
otherwise and Z 2  = 1 if (j, j’) equals (1,4), (2,4), or (3,4) and 
zero otherwise. The results of this simpler model are presented 
under pooled estimates in Table 3. The results indicate that 
the DI method has excellent reproducibility compared with 
the MS method (the concordance correlation coefficients are 
0.973 with 95% CI 0.964-0.980 for SBP and 0.951 with 95% 
CI 0.934-0.964 for DBP) and that it is highly reproducible for 
observers using the MS method (the concordance correlation 
coefficients are 0.988 with 95% CI 0.984-0.991 for SBP and 
0.965 with 95% CI 0.934-0.964 for DBP). These findings are 
similar to the ones reported by Torun et al. (1998). 

We fit the same model using the correlation coefficient as 
measure of association to examine the components of preci- 
sion and accuracy. For the SBP readings, we found that the 
correlation coefficients are 0.988 and 0.973, respectively, for 
the readings within MS observers and the readings between 
the MS and DI methods. This implies that the accuracy esti- 
mates are 1.0 and 0.996, respectively. For the DBP readings, 
we found that the correlation coefficients are 0.969 and 0.955, 
respectively, for the readings within MS observers and the 
readings between the MS and DI methods. This produces an 
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Table 3 
Estimated concordance correlation coeficients from blood pressure data 

Link method Proposed method 

p̂ C 95% CI p̂ C 95% CI 

Systolic Blood Pressure 
Pairwise estimates 

MS observer 1 vs. observer 2 0.988 (0.984, 0.991) 
MS observer 1 vs. observer 3 0.989 (0.986, 0.992) 
MS observer 2 vs. observer 3 0.987 (0.983, 0.990) 
MS observer 1 vs. DI 0.973 (0.965, 0.979) 
MS observer 2 vs. DI 0.969 (0.959, 0.976) 
MS observer 3 vs. DI 0.977 (0.971, 0.983) 

Within MS observers - __ 
Between MS and DI - - 

Pooled estimates 

Diastolic Blood Pressure 

MS observer 1 vs. observer 2 0.961 (0.949, 0.969) 
MS observer 1 vs. observer 3 0.971 (0.962, 0.978) 
MS observer 2 vs. observer 3 0.965 (0.955, 0.973) 
MS observer 1 vs. DI 0.947 (0.931, 0.959) 
MS observer 2 vs. DI 0.954 (0.940, 0.965) 
MS observer 3 vs. DI 0.957 (0.944, 0.966) 

Within MS observers - - 

Between MS and DI - 

Pairwise estimates 

Pooled estimates 

- 

0.988 
0.989 
0.987 
0.973 
0.969 
0.977 

0.988 
0.973 

0.961 
0.971 
0.965 
0.947 
0.954 
0.957 

0.965 
0.951 

(0.984, 0.991) 
(0.985, 0.992) 
(0.983, 0.990) 
(0.964, 0.980) 
(0.957, 0.977) 
(0.970, 0.983) 

(0.984, 0.991) 
(0.964, 0.980) 

(0.945, 0.972) 
(0.958, 0.980) 
(0.951, 0.975) 
(0.926, 0.962) 
(0.935, 0.967) 
(0.940, 0.969) 

(0.953, 0.974) 
(0.934, 0.964) 

accuracy estimate of 0.996 for both the readings within MS 
observers and the readings between MS and DI methods. 
These findings are consistent with the plots shown in Fig- 
ure 1. 

We also analyzed data from a carotid stenosis screening 
study. The goal of the study was to determine the suitability of 
magnetic resonance angiography (MRA) for the noninvasive 
screening of carotid artery stenosis compared with the cur- 
rent gold standard (invasive intra-arterial angiogram). Several 
methods use MRA technology and we consider the following 
two MRA methods: two-dimensional (2D) time of flight and 
three-dimensional (3D) time of flight. The raters assess both 
the left and right carotid arteries even though a patient may 
only have a problem in one of the arteries. Three raters used 
three methods (2D MRA, 3D MAR, and angiogram) to assess 
both arteries. Therefore, a total of 18 readings are available for 
each patient with nine readings from the left artery and nine 
readings from the right artery. These 18 readings are likely to 
be correlated because the readings are assessed from the same 
patient. There are 55 patients with all 18 readings from this 
study. The ranges of the carotid stenosis readings are &loo%. 
To examine the data visually, we produced a total of 18 plots 
comparing pairwise readings from the same rater using differ- 
ent methods and comparing pairwise readings from different 
raters using the same method. For illustrative purposes, we 
present four representative plots in Figure 2 (three plots are 
from the readings of rater 1 using three different methods and 
one plot is from the readings of rater 2 and rater 3 using the 
angiogram method). These plots show that the readings have 

large variation around the 45O line. We fit a regression line for 
each of the plots. The estimated slope coefficients are 0.628, 
0.789, 0.675, and 0.819, respectively. Thus, we expect moder- 
ate precision and relatively good accuracy from this example. 

We considered the covariates age, gender, hypertension, di- 
abetes, coronary artery disease, peripheral vascular disease, 
previous carotid endarterectomy, and previous anticoagulant 
therapy in the marginal and concordance modeling. Because 
the sample size is small for this example and our main inter- 
est is in reproducibility of the two new methods (2D MRA 
and 3D MRA), we begin with the model for the concordance 
correlation coefficients by including parameters correspond- 
ing to within-observer reproducibility, between-method repro- 
ducibility, and parameters for the available subject-specific 
covariates. We centered the age variable at its mean of 67 
years. The results from the final model are presented in Table 
4 for both the marginal model and the concordance correla- 
tion model. 

From Table 4, we conclude that raters 2 and 3 have a ten- 
dency to assess higher stenosis percentage than rater 1. Raters 
using the 2D MRA and the 3D MRA methods tend to assess 
higher stenosis readings than using the angiogram method. 
Carotid stenosis is smaller for patients who are female, dia- 
betic, or have previous anticoagulant therapy than patients 
who are male, nondiabetic, or without previous anticoagu- 
lant therapy. Patients with peripheral vascular disease have 
higher stenosis than their counterparts. From the concordance 
correlation model, we conclude that reproducibility is moder- 
ate, with the highest reproducibility between raters using the 
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Figure 2. Stenosis readings from the carotid screening 
study. 

angiogram ( p c  = 0.711) and the smallest reproducibility be- 
tween raters using the 2D MRA method compared with raters 
using the angiogram (pc = 0.534). The reproducibility is 
higher for older patients (pvalue = 0.004 based on the Wald 
test for the hypothesis sage = 0). Note that the 95% confi- 
dence intervals for the concordance correlation coefficients are 
wide due to the small sample size and moderate precision. 
Furthermore, these estimates may be slightly biased down- 
ward based on our simulation study with small sample sizes. 
Therefore, we should be cautious with the interpretations of 
these results and one may need to confirm these results with 
a future reproducibility study including a larger number of 
patients. 

We also fit the same model using the correlation coefficient 
as a measure of association, and the results are presented 
in Table 4. The estimates of p range from 0.578 (between 
3D MRA and angiogram) to 0.732 (within angiogram raters). 
This implies that the precision of the readings is moderate. 
Because the correlation coefficients are not very different from 
the concordance correlation coefficients, we obtain high esti- 
mates for accuracy. However, the confidence intervals for ac- 
curacy estimates are wide (not shown). 

5.  Discussion 
We have proposed a GEE approach to model the concor- 
dance correlation coefficient to evaluate reproducibility. The 
proposed approach makes minimal distributional assumptions 
and takes into account the correlation between measurements 
made on the same subject when conducting inference. The 
proposed approach enables the data analyst to model differ- 
ing concordance correlation coefficients simultaneously while 
adjusting for covariates. We illustrated the proposed method 
with the analyses of data from two biomedical studies. 

Three sets of estimating equations may be necessary for 
modeling the concordance correlation coefficient. The second 
set of estimating equations may not be needed if moment 
estimates for the variances are used in place of u2 in the 
third set of equations. We found that the standard errors for 
& are not consistently estimated if only the first and the third 
sets of estimating equations are used because the uncertainty 
in estimating u2 was not taken into account. Note that the 
last two estimating equations may be be combined into one 
estimating equation by using the responses Y&yZ3,, j 5 j'. 
The reason that we used two sets of estimating equations is 
to make the distinction between the parameters u2 and a,  
where a ( p c )  is the main interest. 

Subjects may not have an equal number of measurements 
in the presence of missing data. The GEE estimates may be 
biased if the missing data mechanism is not completely at 
random (Liang and Zeger, 1986). If the probability of miss- 
ing is known (e.g., the missingness is by design), then one 
can modify the proposed GEE equations with weighted GEE 
equations (Robins, Rotnitzky, and Zhao, 1995). Further inves- 
tigation is needed if one needs to estimate the missing data 
mechanism. 

As discussed in the Introduction, intraclass correlation 
(Fleiss, 1986; Quan and Shih, 1996) and within-subject coef- 
ficient of variation (Lee et al., 1989) have been used tradition- 
ally as indices to evaluate reproducibility. These indices can 
be estimated by using random-effects models. However, these 
models require full distributional assumptions. Even though 
these models can make covariate adjustments in the marginal 
mean, it is not clear how one can model the agreement mea- 
sure with covariates. 

As indicated by Atkinson and Nevi11 (1997), any type of 
correlation coefficient is highly dependent on the measure- 
ment range. Lin and Chinchilli (1997) recommended that one 
should always report the range of the data and judge agree- 
ment of different measurement methods over a similar ana- 
lytical range. These cautionary notes should be kept in mind 
when one uses the proposed method in practice. Also, King 
and Chinchilli (2000) have proposed a general index, the gen- 
eralized concordance correlation coefficient, for evaluating 
agreement for continuous and categorical data. This index 
is a generalization of the concordance correlation coefficient 
by applying alternative functions of distance between read- 
ings other than squared distance. King and Chinchilli also in- 
troduced a stratified concordance correlation coefficient that 
adjusts for categorical covariates in the marginal mean and 
an extended concordance correlation coefficient that measures 
agreement among more than two responses. 

The computer programs used in this article are available 
from the authors. 
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Table 4 
Analyses of the carotid stenosis screening study 

Estimate SE P-value 

Marginal parameter 
Intercept 47.382 6.015 <0.0001 

11.074 1.723 <0.0001 Indicator for 2D MRA 
Indicator for 3D MRA 11.863 2.240 <0.0001 
Indicator for rater 2 3.880 1.006 0.0001 
Indicator for rater 3 1.679 1.067 0.116 

0.411 0.154 0.007 Age in years 
Indicator for female gender -12.455 3.731 0.0008 
Diabetes (l=yes, O=no) -11.749 4.952 0.018 

14.400 4.294 0.0008 Peripheral vascular disease (1 = yes, 0 = no) 
Previous anticoagulant therapy (1 = yes, 0 = no) -13.305 6.188 0.032 

Concordance Correlation Mode l  a n d  Correlation Coefficient Mode l  
F C  95% CI b bC.J$ 

Within 2D MRA raters 0.623 (0.369, 0.789) 0.639 0.971 
Within 3D MRA raters 0.569 (0.302, 0.754) 0.590 0.973 
Within angiogram raters 0.711 (0.447, 0.861) 0.732 0.965 
Between 2D MRA and angiogram 0.625 (0.408, 0.775) 0.669 0.933 
Between 3D MRA and angiogram 0.534 (0.311, 0.701) 0.578 0.924 
Between 2D MRA and 3D MRA 0.567 (0.328, 0.738) 0.588 0.965 
One-year increase in age 0.019 (0.006, 0.032) 0.021 - - 

screening study. We thank the associate editor and two ref- 
erees for their helpful and constructive comments, which lead 
to a greatly improved manuscript. 

RESUME 
Les ktudes cliniques sont souvent concernkes par l’kvaluation 
de diffhrentes raters/methods qui donnent des valeurs sem- 
blables lors du mesurage d’une variable quantitative. L’usage 
du coefficient de concordance de corrhlation comme une me- 
sure de reproductibilitk a gagnk en popularith dans la pra- 
tique depuis son introduction par Lyn (1989). La mkthode de 
Lin est applicable pour des ktudes kvaluant two raters /two 
method sans rkpktition. Chinchilli et a1 (1996) ont htendu 
l’approche de Lin pour des mesures rkpkthes en utilisant un 
coefficient de concordance de corrklation pondkrk. Cependant 
les mkthodes existantes n’autorisent pas facilement un ajuste- 
ment de covariable. Dans ce papier nous proposons une ap- 
proche gknhraliske d’estimation d’kquation (GEE) pour modk- 
liser le coefficient de concordance de correlation via trois jeux 
d’hquations. L’approche proposke est flexible dans le fait 
qu’elle autorise plus de deux relevhs corrhlks et teste l’kgalitk 
des estimateurs des coefficients de concordance de corrklation. 
Elle autorise l’incorporation de covariables prkdictives de la 
distribution marginale. Elle peut 6tre utiliske pour identifier 
des covariables prkdictives de la corrklation de concordance; 
elle demande un minimum de condition sur les distributions. 
Une ktude de simulations est conduite pour kvaluer les pro- 
prihtks asymptotiques de l’approche proposke. La mkthode est 
illustrke avec des donnkes de deux ktudes biomkdicales. 
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