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Summary

In method comparison and reliability studies, it is often important to assess agreement

between multiple measurements made by different methods, devices, laboratories, observers,

or instruments. For continuous data, the concordance correlation coefficient (CCC) is a

popular index for assessing agreement between multiple methods on the same subject where

none of the methods is treated as reference. Barnhart et al. (2007) proposed coefficient of

individual agreement (CIA) to assess individual agreement between multiple methods for

situations with and without a reference method extending the concept of individual bioe-

quivalence from the FDA 2001 guidelines. In this paper, we propose a new CCC for assessing

agreement between multiple methods where one of the methods is treated as reference. We

compare the properties of the CCC and CIA and their dependency on the relative magnitude

of between-subject variability and within-subject variability. The relationship between CCC

and CIA as well as the impact of between-subject variability are presented algebraically and

graphically. Several examples are presented to explain the interpretation of the CCC and

CIA values.

Keywords: agreement; concordance correlation coefficient; method comparison; intraclass

correlation coefficient; coefficient of individual agreement
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1 Introduction

In method comparison and reliability studies, it is often important to assess agreement

between measurements made by multiple methods, devices, laboratories, observers, or in-

struments. For continuous data, the concordance correlation coefficient (CCC) is the most

popular index for assessing agreement. The CCC was originally developed by Lin (1989)

for two methods (J = 2) each making a single reading on a subject. It was later extended

to multiple J methods for data without replications (Lin, 1989; King and Chinchilli, 2001;

Lin, et al. 2002, Barnhart et al., 2002) and for data with replications (Barnhart et al.,

2005) where none of the methods is treated as reference. These extensions included the

original CCC for J = 2 as a special case. Barnhart and Williamson (2001) used generalized

estimating equations (GEE) approach to model the pairwise CCCs as a function of covari-

ates. Chinchilli et al. (1996), King et al. (2007) extended the CCC for data with repeated

measures comparing two methods. Quiroz (2005) extended the CCC for data with repeated

measures comparing multiple methods by using the two way ANOVA model without inter-

action. Due to the assumptions on the ANOVA model, the CCC defined by Quiroz (2005) is

the special case of CCC by Barnhart et al. (2005) for data with replications. For data with

J methods without replications, the CCC corresponds to a version of intraclass correlation

coefficient defined by a two-way ANOVA model with or without interaction term (McGraw

and Wong, 1996; Barnhart et al., 2002; Carrasco and Jover. 2003). Recently, Barnhart et al.

(2007) proposed a coefficient of individual agreement (CIA) to assess individual agreement

between multiple measurements based on the concept of individual equivalence, extending

the concept of individual bioequivalence in FDA 2001 guidelines for industry. There is a

need to understand the similarities and difference between these two indices. As illustrated

by Atkinson and Nevill (1997), an increase in the between-subject variability would imply

a larger value of CCC even if the individual difference between measurements by the two
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methods remains the same. Therefore, it is of particular interest to quantify the degree of

impact of the between-subject variability on these two indices. The focus of this paper is

to compare the properties of the CCC and the CIA, to investigate the relationship between

them and to understand the impact of the between-subject variability on these two indices.

In section 2, we first present the CCC and CIA indices with parameters based on the

general model Yijk = µij + εijk for ith subject and jth method, where none of the methods

are considered as a reference. We then propose a new CCC for multiple methods where one

of the methods is treated as reference. The expressions for CCC and CIA are re-written

under parameterization which allows to establish the relationship between CCC and CIA

and to understand the degree of impact of various components. We pay special attention

to the relative magnitude of between-subject variability and within-subject variability. The

relationship between CCC and CIA as well as the impact of between-subject variability are

presented algebraically and graphically. Several examples are presented in section 3 to aid

in interpretation of the CCC and CIA values and related components. We conclude with

recommendations on how to use the CCC and CIA in practice in section 4.

2 Comparison of CCC and CIA and Their Dependency

on Between-subject Variability

We first consider the case with two methods (J = 2), and then extend the results to the

case of J methods. We present the CCC for data without replication (Lin, 1989; Lin, et al.

2002, Barnhart et al., 2002) and the CCC and CIA for data with replications (Barnhart et

al., 2005). This CCC treats all methods symmetrically and thus is appropriate for assessing

agreement between methods without a reference. In section 2.3, we propose a new CCC for

multiple methods where one of the methods is treated as reference and compare this CCC
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to the CIA for multiple methods with reference.

2.1 The Case of Two Methods

Consider two readings Yi1, Yi2 by two methods on subject i. The CCC is defined as (Lin,

1989)

ρc = 1 −
E[(Yi1 − Yi2)

2]

E[(Yi1 − Yi2)2|Yi1, Yi2 are independent]
=

2σ1σ2ρ

σ2
1 + σ2

2 + (µ1 − µ2)2
= ρχa

where ρ = Corr(Yi1, Yi2) is referred to as the precision component and

χa =
2σ1σ2

2σ1σ2 + (µ1 − µ2)2 + (σ1 − σ2)2

is referred to as the accuracy component with µj = E(Yij) and σ2
j = V ar(Yij). We note that

χa assesses location shift ((µ1 − µ2)
2) and scale shift ((σ1 − σ2)

2) relative to the scales (σj).

For fixed values of location and scale shifts, χa is an increasing function of σj and we have

χa → 1 and ρc → ρ as σj → ∞, j = 1, 2. Intuitively as the measurement range increases, σj

would increase, and the correlation ρ is also likely to increase even if the individual differences

Yi1 − Yi2 remain the same. Therefore, for data sets where the location and scale shifts stay

the same, one would obtain high CCC value for data with large variability of σj (Atkinson

and Nevill, 1997). In the extreme case, if σj is so much larger than the location and scale

shifts, the CCC would be close to ρ which may be close to 1. Thus, when reporting the CCC

for assessing agreement, estimated values for µj, σj and ρ should also be reported and one

should not compare the CCC values among different data sets unless σj ’s are similar. Because

of its dependency on σj the CCC should be viewed as an agreement index conditional on

between-subject variability.

Assume that other than the subject’s own characteristics and the measurement method,

there are no other external factors influencing the reading value Yij. Then σ2
j = V ar(Yij)

contains both the variability of the subject’s true value and the variability of the random
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error (within-subject) contributed by method j. Thus, it is sensible to decompose σ2
j as

the sum of these two sources of variabilities. Without true gold standard, one would never

know the subject’s true value. However, subject’s true value by method j, µij, may be

estimated if replicated measurements are taken on the same subject by the same method.

Let Yijk be the kth replicated measurement for the ith subject by the jth method. We

write Yijk = µij + εijk with the following minimal common assumptions: (1) µij and εijk

are independent with means of E(µij) = µj and E(εijk) = 0 and between-subject and

within-subject variances of V ar(µij) = σ2
Bj and V ar(εijk) = σ2

Wj, respectively; (2) µ′

ijs

are correlated with Corr(µi1, µi2) = ρµ and εijk’s are uncorrelated. Thus we have σ2
j =

σ2
Bj + σ2

Wj, Cov(Yi1, Yi2) = ρσ1σ2 = ρµσB1σB2 and

ρ =
σB1σB2ρµ

√

σ2
B1 + σ2

W1

√

σ2
B2 + σ2

W2

≤ ρµ.

The CCC for data with replications can be written as

ρc = 1 −
E[(Yi1k − Yi2k′)2]

E[(Yi1k − Yi2k′)2|Yi1k, Yi2k′ are independent]

=
2σB1σB2ρµ

2σB1σB2 + (µ1 − µ2)2 + (σB1 − σB2)2 + σ2
W1 + σ2

W2

This is the total-CCC defined in Barnhart et al. (2005). Note that the above expression

for CCC holds for the case without replications because we can mathematically write Yij =

µij + εij even though we can not estimate σBj and σWj . Barnhart et al. (2005) also defined

inter-CCC at the level of µij’s as

ρc(µ) = 1 −
E[(µi1 − µi2)

2]

E[(µi1 − µi2)2|µi1, µi2 are independent]

=
2σB1σB2ρµ

2σB1σB2 + (µ1 − µ2)2 + (σB1 − σB2)2

and they used intraclass correlation coefficient (ICC) to assess intra-method agreement,

where ICC for method j is expressed as

ρI
j =

σ2
Bj

σ2
Bj + σ2

Wj

.
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The (total) CCC is related to inter-CCC and ICC by

1

ρc

=
1

ρc(µ)
+

1

γ

where

1

γ
=
σ2

W1 + σ2
W2

2ρµσB1σB2
=

1

2ρµ

(
σB1

σB2

1 − ρI
1

ρI
1

+
σB2

σB1

1 − ρI
2

ρI
2

),

is the weighted sum of the odds of 1 − ρI
j . For comparison purpose with CIA, we use σBj

(that is probably better than using σj) to represent the between-subject variability hereafter.

In general, we have

• The CCC decreases as the location and scale shifts ((µ1 −µ2)
2, (σB1 −σB2)

2) increase.

• The CCC decreases as the within-subject variability (σWj) increases.

• The CCC increases as the between-subject variability (σBj) increases.

• The CCC increases as the “true” correlation (ρµ) increases.

The inter-CCC has the same properties as the CCC except without dependency on the

within-subject variability (σWj).

The CIA index was introduced based on the concept of individual agreement (Barnhart et

al, 2007, Haber and Barnhart, 2007), that was extended from the individual bioequivalence

concept in 2001 FDA guidelines for industry. Specifically, individual agreement between

methods is good only if variability of individual measurements from these methods is similar

to the variability of replicated measurements within a method. The CIA for the case of two

methods where neither of them is treated as reference is defined as

ψN =
[E(Yi1k − Yi1k′)2 + E(Yi2k − Yi2k′)2)]/2

E[(Yi1k − Yi2k′)2]

=
σ2

W1 + σ2
W2

σ2
D + (µ1 − µ2)2 + σ2

W1 + σ2
W2

=
σ2

W1 + σ2
W2

2(1 − ρµ)σB1σB2 + (µ1 − µ2)2 + (σB1 − σB2)2 + σ2
W1 + σ2

W2

,
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where σ2
D = V ar(µi1 − µi2) = σ2

B1 + σ2
B2 − 2σB1σB2ρµ is the subject-by-method interaction.

The ψN ranges from 0 to 1 and we want to have high value of CIAN to claim satisfactory in-

dividual agreement. Barnhart et al. (2007) suggested to have ψN ≥ 0.445 for good individual

agreement where the inter-method variability (or total between method variability) is within

125% (or 225%) of the within-subject variability. Haber and Barnhart (2007) suggested to

have ψN ≥ 0.8 for excellent individual agreement where the inter-method variability (or

total between method variability) is within 25% (or 125%) of within-subject variability. We

emphasize that the index CIA is used for assessing individual agreement only if the within-

subject variability σ2
Wj is established to be acceptable. This can be examined by repeatability

coefficient (Bland and Altman, 1999), 1.96 ∗
√

2 ∗ σ2
Wj, to see whether it is less than or equal

to an acceptable value within which the difference between any two readings by the same

method should lie for 95% of subjects. In the special case that there are no location and

scale shifts (i.e., µj = µ, σBj = σB for all j) and ρµ = 1, the CIA is the ratio of the odds of

the CCC over the odds of the intra ICC, i. e.,

ψN =
ρc/(1 − ρc)

ρI/(1 − ρI)
.

In general, we have

• The CIA decreases as the location and scale shifts ((µ1 − µ2)
2, (σB1 − σB2)

2) increase.

• The CIA increases as the within-subject variability (σWj) increases.

• The CIA decreases as the between-subject variability (σBj) increases.

• The CIA increases as the “true” correlation (ρµ) increases.

Thus, the CIA is similar to the CCC in its relationship with the location and scale shifts

and the “true” correlation. However, the CIA differs from the CCC in its relationship with

the within-subject variability (σWj) and the between-subject variability (σBj).
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If ρµ = 0, then the CCC is equal to zero and it is independent of between-subject

variability. In this case, the CIA measures the location, scale shifts and the between-subject

variability relative to the within-subject variability and we have ψN ≥ ρc.

If general, the CCC and the CIA have the following relationship:

ψN =
ρc

1 − ρc

1

γ
or ρc =

γψN

1 + γψN
, if ρc 6= 0, 1,

where 1/γ is defined previously and it is a weighted sum of the odds of 1 − ρI
j . The CIA is

related to inter-CCC and intra ICC by

ψN =
1

1 − 1
ρc(µ)

+ 1
γ

.

Thus, we have ψN ≤ ρc if ρc ≥ 1 − 1/γ and ψN ≥ ρc if ρc ≤ 1 − 1/γ.

For simplicity, we consider case of equal between-subject variabilities and equal within-

subject variabilities, i.e., σ2
Bj = σ2

B, σ
2
Wj = σ2

W , j = 1, 2, to assess the impact of between-

subject variability on these two indices. Let d = σ2
B/σ

2
W denote the magnitude of between-

subject variability relative to the within-subject variability. Then ICC = ρI
1 = ρI

2 = ρI =

d/(d+ 1), γ = ρµd, and the CCC and the CIA are functions of d, ρµ and (µ1 − µ2)
2/(2σ2

W )

with the following expressions:

ρc =
dρµ

d+ (µ1 − µ2)2/(2σ2
W ) + 1

, ψN =
1

(1 − ρµ)d+ (µ1 − µ2)2/(2σ2
W ) + 1

.

The CCC and CIA are related by

ψN =
ρc

1 − ρc

1

ρµd
=

1

1 − ρc

1

d+ (µ1 − µ2)2/(2σ2
W ) + 1

, if ρc 6= 0, 1.

In practice, the within-subject variability and the true correlation (ρµ) may remain constant

or may increase as the between-subject variability increases. As long as the within-subject

variability is considered to be acceptable, the impact of between-subject variability can be

assessed through the magnitude of d.
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To understand the dependency of the CCC and the CIA on the magnitude (d) of the

between-subject variability relative to the within-subject variability, we produce a series of

graphs (Figures 1-3) that provide the values of CCC and the CIA for a fixed value of d as well

as the trend of the CCC and CIA as d increases. As d increases, we examine combinations

of the following: ρµ = 1, 0.8, µ1 6= µ2 or µ1 = µ2 (e.g., (µ1 − µ2)
2 = 9 or (µ1 − µ2)

2 = 0), σ2
W

is a constant or is an increasing function of d (e.g, σ2
W = 9/2 or σ2

W = d). We first look at

these two agreement indices as functions of d (Figure 1).

If ρµ = 1, the CCC measures the location, scale shifts and within-subject variability

relative to the between-subject variability, but the CIA measures the location and scale

shifts relative to the within-subject variability and it is independent of the between-subject

variability. If the within-subject variability remains constant as d increases, Figure 1(a)

shows that the CCC is increasing to 1 while the CIA remains constant as d increases for

fixed location shift and within-subject variability. If the within-subject variability increases

as the between-subject variability increases, e.g., σ2
W = d implying that σ2

B = d2, thus both

the CCC and CIA increase as d increases. As shown in Figure 1(b), the CCC increases faster

than the CIA as d increases. If there is no location shift (µ1 = µ2), then CIA is equal to 1

which is always larger than the CCC (Figure 1(c)).

If 0 < ρµ < 1, then for constant within-subject variability and true correlation (ρµ), the

CCC increases to ρµ and the CIA decreases to zero as d→ ∞ (Figure 1(d)) for fixed values of

location shift and true correlation (ρµ). However, if both the within-subject variability and

the true correlation (ρµ) is an increasing function of d, e.g., σ2
W = d and ρµ = ρI = d/(d+1),

then both the CCC and CIA increase as d increases (Figure 1(e)) with the CCC increases

faster than the CIA, for the case of µ1 6= µ2. If µ1 = µ2, then as d increases, the CCC

increases to 1 and the CIA decreases to 0.5 (Figure 1(f)). We see that the CIA stabilizes

faster than the CCC.
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In summary, we find that the CIA is less dependent on the between-subject variability

than the CCC from the perspective of their dependency on the relative magnitude of between-

subject variability and within-subject variability.

To understand how the value of the CIA is related to the value of CCC, the curves of CIA

as a function of CCC for fixed value of d are shown in Figures 2 and 3. We also super impose

a 45 degree line in the figure to see which value is larger. For fixed value of d, we note that

CCC is bounded by d/(d+ 1). We should point out that these curves correspond to various

values of ρµ because ρµ = ρc(d + (µ1 − µ2)
2/2σ2

W + 1)/d. Figure 2 shows the curves when

µ1 6= µ2 for cases of a constant within-subject variability and non-constant within-subject

variability for different values of d. Figure 3 shows the curves when µ1 = µ2.

In both Figures 2 and 3, the value of CIA is less than CCC for most of the situations.

If d is very large, then CIA is close to zero for most values of the CCC and then CIA jumps

up rapidly to approach to one as the CCC approaches 1. Because the curves are similar in

Figures 2 and 3, we focus on Figure 3 where µ1 = µ2. In this case, the CCC and CIA have

the following expressions:

ρc = ρIρµ =
dρµ

d+ 1
, ψN =

1

d(1 − ρµ) + 1
,

and the CIA is related to the CCC by

ψN =
1

(d+ 1)(1 − ρc)
.

We note that

ψN ≥ ρc if d ≤ 3

ψN ≥ ρc if d > 3 and − 1 ≤ ρc ≤ 0.5 − 0.5
√

d−3
d+1

ψN ≤ ρc if d > 3 and 0.5 − 0.5
√

d−3
d+1

≤ ρc ≤ 0.5 + 0.5
√

d−3
d+1

ψN ≥ ρc if d > 3 and 0.5 + 0.5
√

d−3
d+1

≤ ρc ≤ d/(d+ 1)

In summary, if d ≤ 3, then the CIA is always larger than or equal to the CCC. If d > 3,

then the CIA is larger than the CCC for low value of CCC, but smaller than the CCC for
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most value of CCC, and can be larger than the CCC for only extremely high value of CCC.

If d is very large, i.e., d ≥ 100 or ρI ≥ 0.99, then CIA is close to zero for most values of the

CCC and then CIA jumps up rapidly to approach to one as the CCC approaches 1.

It is interesting to note that the above observations in Figure 3 hold approximately in

general if the difference of the population means, µ1 − µ2, is relatively small as compared to

σB (e.g., Figure 2(b)). This is particularly true if as σBj → ∞, the value of µ1 − µ2 is fixed,

and σ2
Bj/σ

2
Wj → d, σB1/σB2 → 1. This corresponds to the case that the between-subject

variability is a multiple of the within-subject variability and the location shift is negligible

relative to the between-subject variability (implying that the coefficient of variation for the

difference of two readings for the same subject is close to zero).

In summary, the CCC value is usually larger (smaller) than the CIA value for large

(small) relative magnitude of between-subject variability to within-subject variability.

2.2 The Case of Multiple Methods without Reference

Consider J readings Yi1, . . . , YiJ by J methods on subject i. The CCC is defined as (Lin,

1989, 2000; King and Chinchilli, 2001; Barnhart et al., 2002)

ρc = 1 −
E[

∑J−1
j=1

∑J
j′=j+1(Yij − Yij′)

2]

E[
∑J−1

j=1

∑J
j′=j+1(Yij − Yij′)2|Yi1, . . . , YiJ are independent]

=
2

∑J−1
j=1

∑J
j′=j+1 σjσj′ρjj′

(J − 1)
∑J

j=1 σ
2
j +

∑J−1
j=1

∑J
j′=j+1(µj − µj′)2

where E(Yij) = µj, V ar(Yij) = σ2
j , corr(Yij, Yij′) = ρjj′. For data with replication, let

Yijk be the kth replicated measurements for the ith subject by the jth method and write

Yijk = µij + εijk with the same common assumptions in section 2.1. The CCC for data with

replications can be written as

ρc =
2

∑J−1
j=1

∑J
j′=j+1 σBjσBj′ρµjj′

(J − 1)
∑J

j=1 σ
2
Bj +

∑J−1
j=1

∑J
j′=j+1(µj − µj′)2 + (J − 1)

∑J
j=1 σ

2
Wj
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=
2

∑J−1
j=1

∑J
j′=j+1 σBjσBj′ρµjj′

∑J−1
j=1

∑J
j′=j+1[2σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2 + σ2

Wj + σ2
Wj′]

,

by noting that
∑J−1

j=1

∑J
j′=j+1(σ

2
Bj +σ

2
Bj′) = (J−1)

∑J
j=1 σ

2
Bj . This is the total-CCC defined in

Barnhart et al. (2005). Again, this expression for CCC holds for the case without replications

if we write Yij = µij + εij even though we can not estimate σBj and σWj separately. The

inter-CCC defined at the level of µij’s is

ρc(µ) = 1 −
E[

∑J−1
j=1

∑J
j′=j+1(µij − µij′)

2]

E[
∑J−1

j=1

∑J
j′=j+1(µij − µij′)2|µi1, . . . , µiJ are independent]

=
2

∑J−1
j=1

∑J
j′=j+1 σBjσBj′ρµjj′

∑J−1
j=1

∑J
j′=j+1[2σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2]

We use the ICCs, ρI
j , to assess the intra-method agreement for method j. Similar to what is

shown in section 2.1, the (total) CCC is related with the inter-CCC and ICCs by

1

ρc

=
1

ρc(µ)
+

1

γ

where

1

γ
=

(J − 1)
∑J

j=1 σ
2
Wj

2
∑J−1

j=1

∑J
j′=j+1 σBjσBj′ρµjj′

=
J

∑

j=1

ωj

1 − ρI
j

ρI
j

with ωj = σ2
Bj/(2

∑J−1
j=1

∑J
j′=j+1 σBjσBj′ρµjj′) is the weighted sum of the odds of 1 − ρI

j .

The CIA defined in Barnhart et al. (2007) for the case of J methods where none of them

is treated as reference can be written as

ψN =

∑J
j=1E(Yijk − Yijk′)2/2

∑J−1
j=1

∑J
j′=j+1E[(Yij − Yij′)2]/(J − 1)

=

∑J−1
j=1

∑J
j′=j+1(σ

2
Wj + σ2

Wj′)
∑J−1

j=1

∑J
j′=j+1[2(1 − ρµjj′)σBjσBj′ + (µj − µj′)2 + (σBj − σBj′)2 + σ2

Wj + σ2
Wj′]

.

It can be shown that the CCC and CIA are related in the same way as in the case of two

methods, i.e.,

ψN =
ρc

1 − ρc

1

γ
or ρc =

γψN

1 + γψN
, if ρc 6= 0, 1.

Based on the expressions for the CCC and the CIA shown above, the properties of the CCC

and CIA for the case of two methods extend similarly to the case of J methods. Similarly, the
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comparisons of the CCC and CIA in terms of between-subject variability can be extended

from the case of the two methods to the case of J methods.

2.3 The Case of Multiple Methods with One Reference

We use the notation in section 2.2 and assume that the first J − 1 methods are new and

the Jth method is treated as reference. We propose the new CCC for the case of multiple

methods with one reference as

ρR
c = 1 −

E[
∑J−1

j=1 (Yij − YiJ)2]

E[
∑J−1

j=1 (Yij − YiJ)2|Yi1, . . . , YiJ are independent]

=
2

∑J−1
j=1 σjσJρjJ

∑J−1
j=1 [σ2

j + σ2
J + (µj − µJ)2]

.

When there is one new method and one reference, the ρR
c is the same as the usual ρc for the

case without reference in section 2.1. For data with replications, the ρR
c can be written as

ρR
c =

2
∑J−1

j=1 σBjσBJρµjJ
∑J−1

j=1 [2σBjσBJ + (µj − µJ)2 + (σBj − σBJ )2 + σ2
Wj + σ2

WJ ]
.

We can also define inter-CCC at the level of µij’s as

ρc(µ)R = 1 −
E[

∑J−1
j=1 (µij − µiJ)2]

E[
∑J−1

j=1 (µij − µiJ)2|µi1, . . . , µiJ are independent]

=
2

∑J−1
j=1 σBjσBJρµjJ

∑J−1
j=1 [2σBjσBJ + (µj − µJ)2 + (σBj − σBJ )2]

.

It can be shown that the CCC is related with the inter-CCC and ICCs by

1

ρR
c

=
1

ρc(µ)R
+

1

γR∗

where

1

γR∗
=

∑J−1
j=1 (σ2

Wj + σ2
WJ)

2
∑J−1

j=1 σBjσBJρµjJ

=
J

∑

j=1

ωR
j

1 − ρI
j

ρI
j

,

with ωR
j = σ2

Bj/(2
∑J−1

j=1 σBjσBJρµjJ), j = 1, . . . , J−1 and ωR
J = (J−1)σ2

BJ/(2
∑J−1

j=1 σBjσBJρµjJ)

is the weighted sum of the odds of 1 − ρI
j .
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The CIA defined in Barnhart et al. (2007) for the case of J methods where the Jth

method is treated as reference can be written as

ψR =
E(YiJk − YiJk′)2/2

∑J−1
j=1 E[(Yij − YiJ)2]/(J − 1)

=
σ2

WJ
∑J−1

j=1 [2(1 − ρµjJ)σBjσBJ + (µj − µJ)2 + (σBj − σBJ )2 + σ2
Wj + σ2

WJ ]
.

The ψR in general ranges from 0 to 1 because in general we have σ2
WJ ≤ σ2

Wj, j = 1, . . . , J−1.

It is possible for ψR to be greater than 1 and in this case the new method is better than the

reference method because the new method would have smaller within-subject variability and

difference between the new method and the reference is smaller than the difference between

the replications within the reference. Similar to ψN , we want to have high value of CIAR to

claim satisfactory individual agreement with ψR ≥ 0.445 for good agreement and ψR ≥ 0.8

for excellent agreement.

It can be shown that the CCC and CIA are related in general as

ψR =
ρR

c

1 − ρR
c

1

γR
or ρR

c =
γRψR

1 + γRψR
, if ρR

c 6= 0, 1,

where

1

γR
=

(J − 1)σ2
WJ

∑J−1
j=1 σBjσBJρµjJ

.

We note that γR is related to γR∗ defined earlier by

γR = γR∗
σWJ

σ2
∗R

,

where

σ2
∗R =

1

2
(

∑J−1
j=1 σ

2
Wj

J − 1
+ σ2

WJ)

is the weighted average of within-subject variabilities. If σ2
Wj = σ2

WJ , j = 1, . . . , J − 1, then

γR = γR∗.

These definitions and relationships show that the properties examined between the CCC

and CIA for the case of two methods in section 2.1 can be extended to the case of multi-

ple methods with one reference. Estimation for the new CCC and inter-CCC for multiple
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methods with one reference can be obtained through the SAS procedure MIXED as described

in Barnhart et al. (2005).

3 Examples

We present four examples to compare the point estimates of the CCC and CIA from four

different data sets. The first data set comes from Eliasziw et al. (1994) to assess agreement

between a manual goniometer and an electro-goniometer for measuring knee joint angles. It

has a total of 29 subjects where 3 replications were taken by each of the two goniometers.

The second data set comes from Haber et al. (2005) to assess agreement between two radi-

ologists in grading the coronary artery calcium score. It has 12 patients where 2 replications

were taken by each radiologist. The third data set comes from the Emory carotid stenosis

study (Barnhart et al., 2005). We assess agreement between the two new methods, two di-

mensional and three dimensional magnetic resonance angiography (MRA-2D and MRA-3D),

and between the two new methods versus the reference method, the invasive intra-arterial

angiogram (IA). We consider the readings by the three observers using the same method as

the replications of the method for illustration. This data set contains 55 subjects where 3

replications were taken by each method. The fourth data set was taken from the paper by

Bland and Altman (1999) where two human observers and a semi-automatic blood pressure

monitor (denoted as machine) made three replicated readings of systolic blood pressure on

85 subjects. We assess the pairwise agreement among the two observers and the machine

where we consider the observer as a reference and not as a reference.

Table 1 displays the estimates of population means, within-subject variability, between-

subject variability, intra-ICC and repeatability coefficient for each of the four data sets. For

all four data sets, the location and scale shifts are small relative to the within-subject or
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between-subject variability except the systolic blood pressure data where the reading by the

machine has higher mean and higher within-subject variability than the ones by the two

observers. The intra-ICCs are high (> 0.9) for all data sets except the carotid stenosis data

where the intra-ICC is about 0.6. This is because the between-subject variability is relatively

much higher than the within-subject variability except in the carotid stenosis data. We note

that the repeatability coefficient is large (in the range of 60’s) in practical sense for MRA-2D

and MRA-3D in the carotid stenosis data. However, their intra-ICCs are moderate (about

0.6). This indicates that there is substantial within-subject variability when using the new

method MRA-2D or MRA-3D.

Table 2 gives the estimates for the CCC and CIA for the four data examples where none

of the methods is treated as reference. The CCC is estimated by using the SAS procedure

MIXED that was described in Barnhart et al. (2005) for data with replications. The method

of moment is used for estimating the CIA (Barnhart et al., 2007). To better understand

and compare the estimates of the CCC and CIA, estimates of other parameters such as true

correlation (ρµ) and d = σ2
B/σ

2
W are also displayed in table 2. Because the scale shift is small,

the estimate of d is computed as the sum of σ2
Bj over the sum of σ2

Wj , a weighted average of

σ2
Bj/σ

2
Wj with weights σ2

Wj/
∑

j σ
2
Wj . The estimated value of d ranges from 1.6 to 275 with

the largest value coming from the calcium scoring data and the smallest value coming from

the carotid stenosis data.

In the calcium scoring data, the CCC is 0.995 as compared to CIA of 0.754. The

estimated true correlation ρµ is close to 1. With a very large value of d = 275 and ρµ ≈ 1,

this corresponds to the situation observed in Figure 1(a) or 1(b), the CCC is close to one

due to large between-subject variability and the CIA measures the location shift relative to

the within-subject variability.

In the goniometer data, the CCC is 0.944 as compared to CIA of 0.287. The estimated
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true correlation is 0.977. With a relatively large d = 61.4, small location shift and small

(possibly constant) within-subject variability, this may correspond to the situation in Figure

1(d) where the CCC is large due to large between-subject variability and the CIA is small

due to small within-subject variability.

In the systolic blood pressure data, we look at three pairwise comparisons. For assessing

agreement between observers 1 and 2, the CCC is 0.973 and the CIA is 1.0. The estimated

inter-CCC and true correlation are also equal to 1.0. This may correspond to the situation

in Figure 1(c) where CIA is one and the CCC is close to one due to small location and

scale shifts and medium value of d. However, for agreement between observer 1 versus

machine or observer 2 versus machine, the CCC values are around 0.7 while the CIA values

are small around 0.18. There are large location shift and within-subject variability shift in

these two comparisons. Therefore the CCC value is not as large as the CCC comparing the

two observers. However, the CCC is not very low despite a mean difference of 16 points

between the observer (1 or 2) and machine – quite poor agreement from a practical point

of view at the population level. This is because there is large between-subject variability.

The increased within-subject variability should help to increase the value of CIA in the

comparison of observer vs. machine. However, larger location shift, smaller estimated true

correlation (0.83) and medium value of d make the CIA value small as observed in Figure

1(d).

For the above three examples, the CCC values are larger than the CIA values except

the comparisons of two observers in the blood pressure example. In the carotid stenosis

data that compares MRA-2D versus MRA-3D, the CCC value (about 0.58 for left and right

arteries) is smaller than the CIA value (0.881 for left artery and 0.917 for right artery). This

is mainly because there is considerable within-subject variability that decreases the CCC

and increases the CIA. With estimated value of d less than 2, we expect the CCC is less

than the CIA as seen in Figure 2.
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Table 3 presents the estimates for three examples where one of the methods is treated

as reference. We see similar patterns when comparing the CCC value to the CIA value. In

general, the CCC and the CIA values where one method is treated as reference are less than

the CCC and the CIA values without any reference, respectively. This is because the within-

subject variability for the reference method is smaller than the within-subject variability for

the new methods.

4 Discussion

We proposed a new CCC for assessing agreement for multiple methods with one reference.

We compared the CCC and CIA indices for assessing agreement in their dependency on

between-subject variability relative to the within-subject variability for fixed location and

scale shifts. We also characterized the relationship between the CCC and the CIA. In general,

we find that the CIA value is less dependent on the relative magnitude of between-subject

variability to the within-subject variability than the CCC value.

In using the CCC and the CIA for assessing agreement in practice, one needs to consider

the magnitude of the between-subject variability and within-subject variability. The first

question is whether the within-subject variability is acceptable based on the subject matter

for the considered measurement range. This can be examined by repeatability coefficient

that provides the value within which any two readings by the same method would lie for

95% of subjects. If the answer is yes, then consider using the CIA index, especially when the

between-subject variability is large relative to the within-subject variability. If the answer

is no or not sure, then consider using both the CCC and the CIA indices with appropriate

interpretations. We need to keep in mind that a high CCC value may be driven by large

between-subject variability and a high CIA value may be driven by large within-subject
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variability. If the between-subject variability varies greatly from different populations of

subjects, the CCC values from these populations can not be compared, especially if one tries

to find the population that gives the best agreement of the methods. However, the CIA

values from these populations may be compared if the magnitude of the between-subject

variability relative to the within-subject variability is similar across these populations and

the between-subject variabilities in these populations are acceptable.
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Table 1. Estimates of population means, within-subject and between-subject variabilities

and intra-ICC for the four data examples.

µj σ2
Wj σ2

Bj Intra ICC (ρI
j ) Rep. Coef.

Goniometers (Eliasziw, et al., 1994)

Manual Goniometer 1.437 0.736 53.8 0.986 2.37

Electro-goniometer 0.046 0.977 53.8 0.982 2.74

Calcium Scoring (Haber, et al., 2005)

Radiologist A 35.833 7.667 1025.7 0.993 7.67

Radiologist B 36.125 0.125 1116.2 0.999 0.98

Carotid Stenosis (Barnhart et al., 2005)

Left MRA-2D 43.7 576.7 966.5 0.626 66.5

Left MRA-3D 48.2 520.2 953.7 0.647 63.2

Left IA 38.0 139.7 1061.2 0.884 32.8

Right MRA-2D 45.9 568.5 887.7 0.610 66.0

Right MRA-3D 43.9 550.0 903.6 0.622 64.7

Right IA 33.8 88.0 965.2 0.916 26.0

Systolic Blood Pressure (Bland and Altman, 1999)

Observer 1 127.4 37.4 936.0 0.962 17.0

Observer 2 127.3 38.0 917.1 0.960 17.0

Machine 143.0 83.1 983.2 0.922 25.3
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Table 2. Estimates of CCC, CIA and other parameters from the four data examples.

CCC CIA Inter-CCC Intra-ICC True Corr. W. Average

ρc ψN ρc(µ) mean ρI ρµ d =
σ2

B

σ2

W

Goniometers (Eliasziw, et al., 1994)

Manual vs. Electro Goniometer 0.944 0.287 0.959 0.984 0.977 61.4

Calcium Scoring (Haber, et al., 2005)

Radiologist A vs. B 0.995 0.754 0.998 0.996 0.999 274.9

Carotid Stenosis (Barnhart et al., 2005)

Left: MRA-2D vs. MRA-3D 0.589 0.881 0.919 0.637 0.929 1.75

Right: MRA-2D vs. MRA-3D 0.579 0.917 0.939 0.616 0.941 1.60

Systolic Blood Pressure (Bland and Altman, 1999)

Observer 1 vs. 2 0.973 1.0 1.0 0.961 1.0 24.6

Observer 1 vs. Machine 0.701 0.178 0.740 0.942 0.834 15.9

Ovserver 2 vs. Machine 0.700 0.179 0.739 0.941 0.836 15.7
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Table 3. Estimates of CCC and CIA for multiple methods with one reference.

CCC CIA Inter-CCC

ρR
c ψR ρc(µ)R

Goniometers (Eliasziw, et al., 1994)

Manual∗ vs. Electro Goniometer 0.944 0.246 0.959

Carotid Stenosis (Barnhart et al., 2005)

Left: MRA-2D and MRA-3D vs. IA∗ 0.514 0.209 0.683

Right: MRA-2D and MRA-3D vs. IA∗ 0.607 0.103 0.805

Systolic Blood Pressure (Bland and Altman, 1999)

Observer 1∗ vs. Machine 0.701 0.117 0.740

Observer 2∗ vs. Machine 0.700 0.117 0.739

∗ The method is used as reference.

25



Figure 1. CCC and CIA as functions of d
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Figure 1. CCC and CIA as functions of d

Panel (b). (µ1 − µ2)
2 = 9, σ2

W = d, ρµ = 1
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Figure 1. CCC and CIA as functions of d

Panel (c). (µ1 − µ2) = 0, σ2
W = d, ρµ = 1
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Figure 1. CCC and CIA as functions of d

Panel (d). (µ1 − µ2)
2 = 2σ2

W = 9, ρµ = 0.8
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Figure 1. CCC and CIA as functions of d

Panel (e). (µ1 − µ2)
2 = 9, σ2

W = d, ρµ = d/(d+ 1)
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Figure 1. CCC and CIA as functions of d

Panel (f). µ1 − µ2 = 0, σ2
W = d, ρµ = d/(d+ 1)
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Figure 2. CIA as a function of CCC for fixed d =
σ2
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Figure 2. CIA as a function of CCC for fixed d =
σ2
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Figure 3. CIA as a function of CCC for fixed d =
σ2

B
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and µ1 − µ2 = 0
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